Đăng ký

Bài 9 Trang 146 SGK Đại số và Giải tích 12 Nâng cao

Đề bài

Bài 9. Tìm nguyên hàm của các hàm số sau:

a) \(f\left( x \right) = {x^2}\cos 2x;\)             \(b)\,f\left( x \right) = \sqrt x \ln x;\)                                                       

c) \(f\left( x \right) = {\sin ^4}x\cos x;\)            d) \(f\left( x \right) = x\cos \left( {{x^2}} \right);\)

Hướng dẫn giải

a) Đặt

\(\left\{ \matrix{
u = {x^2} \hfill \cr
dv = \cos 2xdx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = 2xdx \hfill \cr
v = {1 \over 2}\sin 2x \hfill \cr} \right.\) 

Do đó \(\int {{x^2}\cos 2xdx = {1 \over 2}{x^2}\sin 2x}  - \int {x\sin 2xdx\,\,\,\left( 1 \right)} \) 

Tính \(\int {x\sin 2xdx} \) 

Đặt 

\(\left\{ \matrix{
u = x \hfill \cr
dv = \sin 2xdx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = dx \hfill \cr
v = - {1 \over 2}\cos 2x \hfill \cr} \right.\)

 \( \Rightarrow \int {x\sin 2xdx =  - {1 \over 2}x\cos 2x + {1 \over 2}\int {\cos 2xdx =  - {1 \over 2}x\cos 2x - {1 \over 4}\sin 2x + C} } \)

Thay vào (1) ta được \(\int {{x^2}\cos 2xdx = {1 \over 2}{x^2}\sin 2x + {1 \over 2}x\cos 2x + {1 \over 4}\sin 2x + C} \) 

b) Đặt 

\(\left\{ \matrix{
u = \ln x \hfill \cr
dv = \sqrt x dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = {{dx} \over x} \hfill \cr
v = {2 \over 3}{x^{{3 \over 2}}} \hfill \cr} \right.\)

\( \Rightarrow \int {\sqrt x } \ln xdx = {2 \over 3}{x^{{3 \over 2}}}\ln x - {2 \over 3}\int {{x^{{1 \over 2}}}dx} \) 

\( = {2 \over 3}{x^{{3 \over 2}}}\ln x - {2 \over 3}.{2 \over 3}{x^{{3 \over 2}}} + C = {2 \over 3}\sqrt {{x^3}} \ln x - {4 \over 9}\sqrt {{x^3}}  + C\)                         

c) Đặt \(u = {\mathop{\rm s}\nolimits} {\rm{inx}} \Rightarrow du = \cos xdx\)

\( \Rightarrow \int {{{\sin }^4}x\cos xdx = } \int {{u^4}du = {{{u^5}} \over 5} + C = {1 \over 5}{{\sin }^5}x}  + C.\) 

d) Đặt \(u = {x^2} \Rightarrow du = 2xdx \Rightarrow xdx = {1 \over 2}du\)

\( \Rightarrow \int {x\cos \left( {{x^2}} \right)dx = {1 \over 2}\int {\cos udu = {1 \over 2}\sin u + C = {1 \over 2}{\mathop{\rm s}\nolimits} {\rm{in}}{{\rm{x}}^2} + C.} } \) 


shoppe