# Bài 74 trang 127 SGK giải tích 12 nâng cao

##### Hướng dẫn giải

a) Điều kiện: $$x < 1$$

\eqalign{ & \,\,\,\,{\log _2}\left( {3 - x} \right) + {\log _2}\left( {1 - x} \right) = 3 \Leftrightarrow {\log _2}\left( {3 - x} \right)\left( {1 - x} \right) = 3 \cr & \Leftrightarrow \left( {3 - x} \right)\left( {1 - x} \right) = 8 \Leftrightarrow {x^2} - 4x - 5 = 0\left[ \matrix{ x = - 1 \hfill \cr x = 5\,\,\left( \text{loại} \right) \hfill \cr} \right. \cr}

Vậy $$S = \left\{ { - 1} \right\}$$
b) Điều kiện:

$$\left\{ \matrix{ 3 - x > 0 \hfill \cr 9 - {2^x} > 0 \hfill \cr} \right. \Leftrightarrow x < 3$$

\eqalign{ & \,\,\,\,{\log _2}\left( {9 - {2^x}} \right) = {10^{\log \left( {3 - x} \right)}} \Leftrightarrow {\log _2}\left( {9 - {2^x}} \right) = 3 - x \Leftrightarrow 9 - {2^x} = {2^{3 - x}} \cr & \Leftrightarrow 9 - {2^x} = {8 \over {{2^x}}} \Leftrightarrow {4^x} = {9.2^x} - 8 = 0 \Leftrightarrow \left[ \matrix{ {2^x} = 1 \hfill \cr {2^x} = 8 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{ x = 0 \hfill \cr x = 3\,\,\left( \text{loại} \right) \hfill \cr} \right. \cr}

Vậy $$S = \left\{ 0 \right\}$$
c) Điều kiện: $$x > 0$$

\eqalign{ & \Leftrightarrow {20.7^{\lg x - 1}} = {28.5^{\lg x - 1}} \cr & \Leftrightarrow {\left( {{7 \over 8}} \right)^{\lg x - 1}} = {7 \over 8} \cr & \Leftrightarrow \lg x - 1 = 1 \Leftrightarrow \lg x = 2 \Leftrightarrow x = 100 \cr}

Vậy $$S = \left\{ {100} \right\}$$
d) Ta có:

\eqalign{ & {6^x} + {6^{x + 1}} = {2^x} + {2^{x + 1}} + {2^{x + 2}} \cr & \Leftrightarrow {6^x}\left( {1 + 6} \right) = {2^x}\left( {1 + 2 + {2^2}} \right) \cr & \Leftrightarrow {3^x} = 1 \cr & \Leftrightarrow x = 0 \cr}

Vậy $$S = \left\{ 0 \right\}$$