Bài 6 trang 105 SGK Hình học 11
Đề bài
Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) và có cạnh \(SA\) vuông góc với mặt phẳng \((ABCD)\). Gọi \(I\) và \(K\) là hai điểm lần lượt lấy trên hai cạnh \(SB\) và \(SD\) sao cho \(\frac{SI}{SB}=\frac{SK}{SD}.\) Chứng minh:
a) \(BD\) vuông góc với \(SC\);
b) \(IK\) vuông góc với mặt phẳng \((SAC)\).
Hướng dẫn giải
a) Chứng minh \(BD \bot \left( {SAC} \right)\).
b) Chứng minh \(IK // BD\).
Lời giải chi tiết
a) \(ABCD\) là hình thoi nên \(AC\bot BD\) (1)
Theo giả thiết: \(SA\bot (ABCD)\Rightarrow SA\bot BD\) (2)
Từ (1) và (2) suy ra \(BD ⊥ (SAC)\) \(\Rightarrow BD ⊥ SC\).
b) Theo giả thiết \(\frac{SI}{SB}=\frac{SK}{SD}\) theo định lí Ta-lét ta có \(IK//BD\)
Theo a) ta có: \(BD ⊥ (SAC) \Rightarrow IK ⊥ (SAC)\).