Bài 59 trang 56 SGK giải tích 12 nâng cao
Đề bài
Bài 59. Chứng minh rằng các đồ thị của ba hàm số: \(f\left( x \right) = - {x^2} + 3x + 6\); \(g\left( x \right) = {x^3} - {x^2} + 4\) và \(h\left( x \right) = {x^2} + 7x + 8\) tiếp xúc với nhau tại điểm \(A(-1;2)\) (tức là chúng có cùng tiếp tuyến tại \(A\)).
Hướng dẫn giải
Ta có: \(f\left( { - 1} \right) = g\left( { - 1} \right) = h\left( { - 1} \right) = 2\)
Do đó điểm \(A(-1;2)\) là điểm chung của ba đường cong đã cho. Ngoài ra, ta có:
\(\eqalign{
& f'\left( x \right) = - 2x + 3;\,g'\left( x \right) = 3{x^2} - 2x;\,h'\left( x \right) = 2x + 7 \cr
& f'\left( { - 1} \right) = g'\left( { - 1} \right) = h'\left( { - 1} \right) = 5 \cr} \)
Vậy ba đường cong có tiếp tuyến chung điểm \(A\).