Bài 22 trang 23 Sách giáo khoa (SGK) Hình học 10 Nâng cao
Đề bài
Bài 22. Cho tam giác \(OAB\). Gọi \(M, N\) lần lượt là trung điểm hai cạnh \(OA\) và \(OB\). Hãy tìm các số \(m\) và \(n\) thích hợp trong mỗi đẳng thức sau đây
\(\eqalign{
& \overrightarrow {OM} = m\overrightarrow {OA} + n\overrightarrow {OB} ;\,\,\,\,\,\,\overrightarrow {MN} = m\overrightarrow {OA} + n\overrightarrow {OB} ; \cr
& \overrightarrow {AN} = m\overrightarrow {OA} + n\overrightarrow {OB} ;\,\,\,\,\,\,\,\,\overrightarrow {MB} = m\overrightarrow {OA} + n\overrightarrow {OB} . \cr} \)
Hướng dẫn giải
Ta có
\(\eqalign{
& \overrightarrow {OM} = {1 \over 2}\overrightarrow {OA} = {1 \over 2}\overrightarrow {OA} + 0.\overrightarrow {OB} \,\,\,\,\, \Rightarrow \,m = {1 \over 2},\,n = 0. \cr
& \overrightarrow {MN} = \overrightarrow {ON} - \overrightarrow {OM} = {1 \over 2}\overrightarrow {OB} - {1 \over 2}\overrightarrow {OA} = \left( { - {1 \over 2}} \right)\overrightarrow {OA} + {1 \over 2}\overrightarrow {OB} \,\,\,\,\, \Rightarrow \,m = - {1 \over 2},\,n = {1 \over 2}. \cr
& \overrightarrow {AN} = \overrightarrow {ON} - \overrightarrow {OA} = {1 \over 2}\overrightarrow {OB} - \overrightarrow {OA} = \left( { - 1} \right)\overrightarrow {OA} + {1 \over 2}\overrightarrow {OB} \,\,\,\, \Rightarrow \,m = - 1,\,n = {1 \over 2}. \cr
& \overrightarrow {MB} = \overrightarrow {OB} - \overrightarrow {OM} = \overrightarrow {OB} - {1 \over 2}\overrightarrow {OA} = \left( { - {1 \over 2}} \right)\overrightarrow {OA} + \overrightarrow {OB} \,\,\,\, \Rightarrow \,m = - {1 \over 2},\,n = 1. \cr} \)