Bài 18 trang 223 SGK Đại số 10 Nâng cao
a) 3x2 - |5x + 2| >0
b) \(\sqrt {2{x^2} + 7x + 5} > x + 1\)
c) \(\sqrt {{x^2} + 4x - 5} \le x + 3\)
Đáp án
a) Ta có:
\(\eqalign{
 & 3{x^2} - \left| {5x + 2} \right| > 0 \Leftrightarrow |5x + 2| < 3{x^2} \cr 
 & \Leftrightarrow - 3{x^2} < 5x + 2 < 3{x^2} \cr 
 & \Leftrightarrow \left\{ \matrix{
 3{x^2} + 5x + 2 > 0 \hfill \cr 
 3{x^2} - 5x - 2 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
 \left[ \matrix{
 x < - 1 \hfill \cr 
 x > - {2 \over 3} \hfill \cr} \right. \hfill \cr 
 \left\{ \matrix{
 x < - {1 \over 3} \hfill \cr 
 x > 2 \hfill \cr} \right. \hfill \cr} \right. \cr&\Leftrightarrow \left[ \matrix{
 x < - 1 \hfill \cr 
 - {2 \over 3} < x < - {1 \over 3} \hfill \cr 
 x > 2 \hfill \cr} \right. \cr} \)
Vậy: \(S = ( - \infty ,\, - 1) \cup ( - {2 \over 3}; - {1 \over 3}) \cup (2, + \infty )\)
b) Ta có:
\(\eqalign{
 & \sqrt {2{x^2} + 7x + 5} > x + 1 \cr 
 & \Leftrightarrow \,\,\left[ \matrix{
 (I)\,\left\{ \matrix{
 x + 1 < 0 \hfill \cr 
 2{x^2} + 7x + 5 \ge 0 \hfill \cr} \right. \hfill \cr 
 (II)\left\{ \matrix{
 x + 1 \ge 0 \hfill \cr 
 2{x^2} + 7x + 5 > {(x + 1)^2} \hfill \cr} \right.\, \hfill \cr} \right. \cr} \) 
Ta có:
\((I) \Leftrightarrow \left\{ \matrix{
 x < - 1 \hfill \cr 
 \left[ \matrix{
 x \le - {5 \over 2} \hfill \cr 
 x \ge - 1 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow x \le - {5 \over 2}\) 
\((II) \Leftrightarrow \left\{ \matrix{
 x \ge - 1 \hfill \cr 
 {x^2} + 5x + 4 > 0 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{
 x \ge - 1 \hfill \cr 
 \left[ \matrix{
 x < - 4 \hfill \cr 
 x > - 1 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow x > - 1\) 
Vậy: \(S = ( - \infty ;\, - {5 \over 2}{\rm{]}}\, \cup ( - 1;\, + \infty )\)
c) Ta có:
\(\eqalign{
 & \sqrt {{x^2} + 4x - 5} \le x + 3 \cr&\Leftrightarrow \left\{ \matrix{
 x + 3 \ge 0 \hfill \cr 
 {x^2} + 4x - 5 \ge 0 \hfill \cr 
 {x^2} + 4x - 5 \le {(x + 3)^2} \hfill \cr} \right. \cr 
 & \Leftrightarrow \left\{ \matrix{
 x \ge - 3 \hfill \cr 
 \left[ \matrix{
 x \le - 5 \hfill \cr 
 x \ge 1 \hfill \cr} \right. \hfill \cr 
 x \ge - 7 \hfill \cr} \right. \Leftrightarrow x \ge 1 \cr} \)
Vậy \(S = [1, +∞)\)
