Đăng ký

Bài 18 Trang 161 SGK Đại số và Giải tích 12 Nâng cao

Đề bài

Bài 18. Dùng phương pháp tích phân từng phần để tính các tích phân sau:

a) \(\int\limits_1^2 {{x^5}} \ln xdx;\)               b) \(\int\limits_0^1 {\left( {x + 1} \right)} {e^x}dx;\)       

c) \(\int\limits_0^\pi  {{e^x}} \cos xdx;\)         d) \(\int\limits_0^{{\pi  \over 2}} {x\cos xdx.} \)

Hướng dẫn giải

a) Đặt 

\(\left\{ \matrix{
u = \ln x \hfill \cr
dv = {x^5}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = {{dx} \over x} \hfill \cr
v = {{{x^6}} \over 6} \hfill \cr} \right.\)

 \(\int\limits_1^2 {{x^5}} \ln xdx = \left. {{{{x^6}} \over 6}\ln x} \right|_1^2 - {1 \over 6}\int\limits_1^2 {{x^5}} dx = \left. {\left( {{{{x^6}} \over 6}\ln x - {{{x^6}} \over {36}}} \right)} \right|_1^2 = {{32} \over 3}\ln 2 - {7 \over 4}\)

b) Đặt 

\(\left\{ \matrix{
u = x + 1 \hfill \cr
dv = {e^x}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = dx \hfill \cr
v = {e^x} \hfill \cr} \right.\)

\(\int\limits_0^1 {\left( {x + 1} \right)} {e^x}dx = \left. {\left( {x + 1} \right){e^x}} \right|_0^1 - \int\limits_0^1 {{e^x}dx = e} \)

c) Đặt \(I = \int\limits_0^\pi  {{e^x}\cos xdx} \)

Đặt

\(\left\{ \matrix{
u = {e^x} \hfill \cr
dv = \cos xdx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = {e^x}dx \hfill \cr
v = {\mathop{\rm s}\nolimits} {\rm{inx}} \hfill \cr} \right.\)

Suy ra \(I = \left. {{e^x}{\mathop{\rm s}\nolimits} {\rm{inx}}} \right|_0^\pi  - \int\limits_0^\pi  {{e^x}\sin {\rm{x}}dx}  =  - \int\limits_0^\pi  {{e^x}\sin {\rm{x}}dx} \) 

Đặt 

\(\left\{ \matrix{
u = {e^x} \hfill \cr
dv = \sin {\rm{x}}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = {e^x}dx \hfill \cr
v = - \cos x \hfill \cr} \right.\)

Do đó \(I =  - \left[ {\left. {\left( { - {e^x}\cos x} \right)} \right|_0^\pi  + \int\limits_0^\pi  {{e^x}\cos xdx} } \right] = {e^\pi }\cos \pi  - {e^0}.\cos 0 - I\)

\( \Rightarrow 2I =  - {e^\pi } - 1 \Rightarrow I =  - {1 \over 2}\left( {{e^\pi } + 1} \right)\)      

b) Đặt 

\(\left\{ \matrix{
u = x \hfill \cr
dv = \cos xdx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = dx \hfill \cr
v = {\mathop{\rm s}\nolimits} {\rm{inx}} \hfill \cr} \right.\)

Do đó \(\int\limits_0^{{\pi  \over 2}} {x\cos xdx = \left. {x\sin x} \right|_0^{{\pi  \over 2}}}  - \int\limits_0^{{\pi  \over 2}} {\sin {\rm{x}}dx = \left. {\left( {x\sin x + \cos x} \right)} \right|_0^{{\pi  \over 2}}}  = {\pi  \over 2} - 1\)