Đăng ký

Bài 1 trang 83 SGK Hình học 10

Đề bài

Tìm tâm và bán kính của các đường tròn sau:

a) \({x^2} + {\rm{ }}{y^2} - 2x-2y - 2{\rm{ }} = 0\)

b) \(16{x^2} + {\rm{ }}16{y^2} + {\rm{ }}16x{\rm{ }}-{\rm{ }}8y{\rm{ }}-{\rm{ }}11{\rm{ }} = {\rm{ }}0\)

c) \({x^{2}} + {\rm{ }}{y^{2}} - {\rm{ }}4x{\rm{ }} + {\rm{ }}6y{\rm{ }}-{\rm{ }}3{\rm{ }} = {\rm{ }}0.\)

Hướng dẫn giải

Cho phương trình đường tròn: \({x^2} + {y^2} - 2ax - 2by + c = 0.\) Khi đó đường tròn có tâm \(I(a;\, b)\) và bán kính: \(R = \sqrt {{a^2} + {b^2} - c} .\)

Lời giải chi tiết

a) Ta có : \(-2a = -2 \Rightarrow a = 1\)

               \(-2b = -2 \Rightarrow b = 1  \Rightarrow I(1; 1)\)

\({R^2} = {a^2} + {b^2} - c \)\(= {1^2} + {1^2} - ( - 2) = 4 \Rightarrow R = \sqrt 4  = 2\)

b) \(16{x^2} + {\rm{ }}16{y^2} + {\rm{ }}16x{\rm{ }}-{\rm{ }}8y{\rm{ }}-{\rm{ }}11{\rm{ }} = {\rm{ }}0\)

\( \Leftrightarrow {x^2} + {y^2} + x - {1 \over 2}y - {{11} \over {16}} = 0\)

\(\eqalign{
& - 2a = 1 \Rightarrow a = - {1 \over 2} \cr
& - 2b = - {1 \over 2} \Rightarrow b = {1 \over 4} \cr
& \Rightarrow I\left( { - {1 \over 2};{1 \over 4}} \right) \cr} \)

\({R^2} = {a^2} + {b^2} - c \)\(= {\left( { - {1 \over 2}} \right)^2} + {\left( {{1 \over 4}} \right)^2} - \left( { - {{11} \over {16}}} \right) = 1\)\( \Rightarrow R = \sqrt 1  = 1\)

 c)  

\(\eqalign{
& - 2a = - 4 \Rightarrow a = 2 \cr
& - 2b = 6 \Rightarrow b = - 3 \cr
& \Rightarrow I\left( {2; - 3} \right) \cr} \)

\({R^2} = {a^2} + {b^2} - c \)\(= {2^2} + {\left( { - 3} \right)^2} - \left( { - 3} \right) = 16 \)\(\Rightarrow R = \sqrt {16}  = 4\)