Trắc nghiệm Khái niệm về thể tích của khối đa diện...
- Câu 1 : Cho hình hộp ABCD.A’B’C’D’ có thể tích bằng V. Gọi M, N, P, Q, E, F lần lượt là tâm các hình bình hành ABCD, A’B’C’D’, ABB’A’, BCC’B’, CDD’C’, DAA’D’. Thể tích khối đa diện có các đỉnh M, P, Q, E, F, N bằng:
A.
B.
C.
D.
- Câu 2 : Cho khối lăng trụ đứng ABC.A’B’C’ có đáy là tam giác cân tại C, . Thể tích khối lăng trụ ABC.A’B’C’ bằng:
A.
B.
C.
D.
- Câu 3 : Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, , cạnh BC = a, đường chéo A’B tạo với mặt phẳng (ABC) một góc . Thể tích khối lăng trụ ABC.A’B’C’ là:
A.
B.
C.
D.
- Câu 4 : Một khối chóp tam giác có cạnh đáy bằng 6, 8, 10. Một cạnh bên có độ dài bằng 4 và tạo với đáy một góc . Thể tích của khối chóp đó là:
A. 16
B.
C.
D.
- Câu 5 : Cho hình chóp S.ABCD đáy là hình chữ nhật, SA vuông góc với đáy, . Góc giữa SB và đáy bằng . Thể tích khối chóp S.ABC bằng:
A.
B.
C.
D.
- Câu 6 : Khối chóp tam giác có độ dài 3 cạnh xuất phát từ một đỉnh là a, 2a, 3a có thể tích lớn nhất bằng:
A.
B.
C.
D.
- Câu 7 : Cho hình chóp S.ABCD có ABCD là hình thang vuông tại A và D thỏa mãn và . Thể tích khối chóp S.BCD là:
A.
B.
C.
D.
- Câu 8 : Cho hình chóp đều S.ABCD có cạnh bên và cạnh đáy bằng a. Thể tích của khối chóp S.ABCD là
A.
B.
C.
D.
- Câu 9 : Tính thể tích khối chóp tam giác đều có độ dài cạnh bên bằng và độ dài cạnh đáy bằng a.
A.
B.
C.
D.
- Câu 10 : Cho hình chóp S.ABCD có . Biết , cạnh SC tạo với đáy một góc và diện tích tứ giác ABCD là . Gọi H là hình chiếu của A trên cạnh SC. Tính thể tích khối chóp H.ABCD.
A.
B.
C.
D.
- Câu 11 : Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng . Tính thể tích khối chóp S.ABC?
A.
B.
C.
D.
- Câu 12 : Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy (ABCD) và . Điểm M thuộc cạnh SA sao cho . Xác định k sao cho mặt phẳng (BMC) chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau.
A.
B.
C.
D.
- Câu 13 : Cho hình lăng trụ ABC.A’B’C’ có độ dài tất cả các cạnh bằng a và hình chiếu vuông góc của đỉnh C trên (ABB’A’) là tâm của hình bình hành ABB’A’. Thể tích của khối lăng trụ là:
A.
B.
C.
D.
- Câu 14 : Cho tứ diện đều ABCD có cạnh bằng 8. Ở bốn đỉnh tứ diện, người ta cắt đi các tứ diện đều bằng nhau có cạnh bằng x, biết khối đa diện tạo thành sau khi cắt có thể tích bằng thể tích tứ diện ABCD. Giá trị của x là:
A.
B.
C.
D.
- Câu 15 : Cho tứ diện ABCD có G là điểm thỏa mãn . Mặt phẳng thay đổi chứ BG và cắt AC, AD lần lượt tại M và N. Giá trị nhỏ nhất của tỉ số là:
A.
B.
C.
D.
Xem thêm
- - Trắc nghiệm Toán 12 Chương 2 Bài 1 Lũy thừa
- - Trắc nghiệm Toán 12 Chương 2 Bài 2 Hàm số lũy thừa
- - Trắc nghiệm Toán 12 Chương 2 Bài 4 Hàm số mũ và hàm số lôgarit
- - Trắc nghiệm Toán 12 Chương 2 Bài 5 Phương trình mũ và phương trình lôgarit
- - Trắc nghiệm Toán 12 Chương 2 Bài 6 Bất phương trình mũ và bất phương trình lôgarit
- - Trắc nghiệm Toán 12 Chương 3 Bài 1 Nguyên hàm
- - Trắc nghiệm Toán 12 Chương 3 Bài 2 Tích phân
- - Trắc nghiệm Toán 12 Chương 3 Bài 3 Ứng dụng của tích phân trong hình học
- - Trắc nghiệm Toán 12 Bài 1 Số phức
- - Trắc nghiệm Toán 12 Bài 2 Cộng, trừ và nhân số phức