Đề thi minh họa môn Toán ứng dụng thực tế thi vào...
- Câu 1 : a) Tính: \(\frac{2}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}+\frac{2}{\sqrt{3}}+\frac{\sqrt{2}}{3}\) b) Cho phương trình: \({x^2} - (2m + 1)x + {m^2} = 0\) (1). Với giá trị nào của m phương trình (1) có nghiệm kép.Tìm nghiệm kép đó.
A \(\begin{array}{l}\sqrt 3 \\m = \frac{{ - 1}}{4},{x_1} = {x_2} = \frac{1}{4}\end{array}\)
B \(\begin{array}{l}\sqrt 3 \\m = \frac{{ - 1}}{4},{x_1} = {x_2} = \frac{1}{3}\end{array}\)
C \(\begin{array}{l}\sqrt 5 \\m = \frac{{ - 1}}{4},{x_1} = {x_2} = \frac{1}{4}\end{array}\)
D \(\begin{array}{l}\sqrt 5 \\m = \frac{{ - 1}}{4},{x_1} = {x_2} = \frac{1}{6}\end{array}\)
- Câu 2 : Cho đường tròn (O). Từ một điểm M nằm ngoài đường tròn, kẻ hai cát tuyến MAB và MCD (A nằm giữa M và B, C nằm giữa M và D). Biết rằng, MD = 20cm, CD = 12cm và \(MA=\frac{1}{4}MB\). Tính độ dài đoạn MA và AB?
A \(MA=2{{\sqrt{10}}^{{}}}cm{{;}^{{}}}AB=4{{\sqrt{10}}^{{}}}cm\)
B \(MA=5{{\sqrt{10}}^{{}}}cm{{;}^{{}}}AB=6{{\sqrt{10}}^{{}}}cm\)
C \(MA=2{{\sqrt{10}}^{{}}}cm{{;}^{{}}}AB=6{{\sqrt{10}}^{{}}}cm\)
D \(MA=5{{\sqrt{10}}^{{}}}cm{{;}^{{}}}AB=2{{\sqrt{10}}^{{}}}cm\)
- Câu 3 : Để chuyển đổi liều thuốc dùng theo độ tuổi của một loại thuốc, các dược sĩ dùng công thức sau:\(c=0,0417D\left( a+1 \right)\). Trong đó, D là liều dùng cho người lớn (theo đơn vị mg) và a là tuổi của em bé, c là liều dùng cho em bé. Hỏi:a) Với loại thuốc có liều dùng cho người lớn là D = 200mg thì với em bé hai tuổi sẽ có liều dùng thích hợp là bao nhiêu?b) Với loại thuốc có liều dùng thích hợp cho em bé ba tuổi là 41,7mg thì người lớn sẽ có liều dùng thích hợp là bao nhiêu?c) Biết rằng, liều dùng thích hợp cho người lớn là 300mg, thì liều dùng thích hợp tương ứng với một em bé là 75,06mg. Hỏi em bé đó bao nhiêu tuổi?
A a) \(c = 55,02mg\)
b) \(D = 250mg\)
c) a=6
B a) \(c = 25,02mg\)
b) \(D = 250mg\)
c) a=5
C a) \(c = 25,52mg\)
b) \(D = 650mg\)
c) a=5
D a) \(c = 65,02mg\)
b) \(D = 250mg\)
c) a=7
- Câu 4 : Một cửa hàng một ngày bán được 200 ly trà sữa với giá 18.000 đồng/ly. Trừ hết mọi chi phí (tiền mặt bằng, tiền điện, tiền vốn mua trà…) thì cứ mỗi ly trà sữa bán ra cửa hàng thu được 30% tiền lời so với giá bán. Sau một thời gian, chủ quán nghĩ ra hai phương án kinh doanh như sau:Phương án một: Nếu cửa hàng tăng giá bán mỗi ly trà sữa lên thành 20 000 đồng/ly, thì cửa hàng sẽ bị mất đi 20 khách hàng. Tuy nhiên, với giá bán đó thì mỗi ly trà sữa bán ra cửa hàng sẽ lời được 37% so với giá đã tăng (so với giá 20 000 đồng/ ly).Phương án hai: Nếu cửa hàng giảm giá bán mỗi ly trà sữa xuống còn 15.000 đồng/ly thì khi đó cửa hàng sẽ có thêm 100 khách hàng đến mỗi ngày. Tuy nhiên, mỗi ly trà sữa được bán ra với giá đó thì cửa hàng chỉ lời được 16% so với giá bán đã giảm (so với giá 15 000 đồng/ ly).a) Nếu cửa hàng bán với giá 18 000 đồng/ly thì trong một ngày cửa hàng đó lời được bao nhiêu tiền ?b) Trong hai phương án trên, theo em cửa hàng nên chọn phương án nào? (Giả sử mỗi khách chỉ mua một ly và không tính khách vãng lai).
A a) 1 080 000 đồng
b) Phương án hai
B a) 4 080 000 đồng
b) Phương án một
C a) 1 080 000 đồng
b) Phương án một
D a) 6 080 000 đồng
b) Phương án hai
- Câu 5 : Trong một giờ thực hành Hóa Học, thầy Tưởng yêu cầu học sinh pha trộn được 600ml dung dịch H2SO4 1,5M. Vậy các em học sinh cần phải trộn bao nhiêu ml dung dịch H2SO4 2,5M với bao nhiêu ml dung dịch H2SO41M để được 600ml dung dịch H2SO4 1,5M như thầy Tưởng yêu cầu?
A Thể tích dung dịch H2SO4 2,5M cần đem pha trộn là 0,1 lít = 100ml. Thể tích dung dịch H2SO4 1M cần đem pha trộn là 0,2 lít = 200ml.
B Thể tích dung dịch H2SO4 2,5M cần đem pha trộn là 0,4 lít = 400ml. Thể tích dung dịch H2SO4 1M cần đem pha trộn là 0,2 lít = 200ml.
C Thể tích dung dịch H2SO4 2,5M cần đem pha trộn là 0,2 lít = 200ml. Thể tích dung dịch H2SO4 1M cần đem pha trộn là 0,4 lít = 400ml.
D Thể tích dung dịch H2SO4 2,5M cần đem pha trộn là 0,2 lít = 200ml. Thể tích dung dịch H2SO4 1M cần đem pha trộn là 0,1 lít = 100ml.
- Câu 6 : Để khuyến khích tiết kiệm điện, giá điện sinh hoạt được tính theo kiểu lũy tiến, nghĩa là nếu người dùng càng dùng nhiều điện thì giá mỗi số điện càng tăng lên theo các mức sau:Mức 1: Tính cho 50 số điện đầu tiên.Mức 2: Tính cho số điện thứ 51 đến 100, mỗi số đắt hơn 100 đồng so với mức 1.Mức 3: Tính cho số điện thứ 101 đến 200, mỗi số đắt hơn 200 đồng so với mức 2.Mức 4: Tính cho số điện thứ 201 đến 300, mỗi số đắt hơn 500 đồng so với mức 3.Mức 5: Tính cho số điện thứ 301 đến 400, mỗi số đắt hơn 250 đồng so với mức 4.Mức 6: Tính cho số điện thứ 401 trở lên, mỗi số đắt hơn 80 đồng so với mức 5.Ngoài ra, người sử dụng còn phải trả thêm 10% thuế giá trị gia tăng (gọi tắt là thuếVAT).Tháng vừa rồi nhà bạn Hao Điện dùng hết 185 số điện và phải trả 328 625 đồng. Hỏi mỗi số điện ở mức 1 giá bao nhiêu tiền?
A 1450 đồng.
B 3450 đồng.
C 1460 đồng.
D 1150 đồng.
- Câu 7 : Điểm trung bình của 100 học sinh trong hai lớp 9A và 9B là 7,2. Tính điểm trung bình của các học sinh mỗi lớp, biết rằng số học sinh lớp 9A gấp rưỡi số học sinh lớp 9B và điểm trung bình của lớp 9B gấp rưỡi điểm trung bình của lớp 9A.
A 9A là 8,0 và 9B là 9,0
B 9A là 6,0 và 9B là 9,0
C 9A là 6,0 và 9B là 8,0
D 9A là 6,5 và 9B là 9,0
- - Trắc nghiệm Toán 9 Bài 1 Căn bậc hai
- - Trắc nghiệm Toán 9 Bài 2 Căn thức bậc hai và hằng đẳng thức căn bậc hai
- - Trắc nghiệm Toán 9 Bài 3 Liên hệ giữa phép nhân và phép khai phương
- - Trắc nghiệm Toán 9 Bài 4 Liên hệ giữa phép chia và phép khai phương
- - Trắc nghiệm Toán 9 Bài 6 Biến đổi đơn giản biểu thức chứa căn thức bậc hai
- - Trắc nghiệm Toán 9 Bài 8 Rút gọn biểu thức chứa căn bậc hai
- - Trắc nghiệm Toán 9 Bài 9 Căn bậc ba
- - Trắc nghiệm Toán 9 Bài 1 Hàm số y = ax^2 (a ≠ 0)
- - Trắc nghiệm Toán 9 Bài 2 Đồ thị của hàm số y = ax^2 (a ≠ 0)
- - Trắc nghiệm Toán 9 Bài 3 Phương trình bậc hai một ẩn