Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề t...
- Câu 1 : Cho đường thẳng l song song với đường thẳng . Khi quay đường thẳng l xung quanh đường thẳng (l luôn cách một khoảng không đổi) sẽ tạo ra
A. Mặt trụ.
B. Hình trụ.
C. Khối trụ.
D. Hình nón
- Câu 2 : Người ta thiết kế mô hình viên đạn bằng cách cho hình phẳng (H) có kích thước như hình vẽ quay xung quanh trục AB, sau đó tiến hành mạ vàng xung quanh và đáy để được mô hình viên đạn. Biết giá của 1 cm2 mạ vàng là 50.000 VNĐ. Khi đó số tiền cần mạ vàng mô hình viên đạn gần số nào nhất sau đây?
A. 800.000 VNĐ.
B. 900.000 VNĐ.
C. 1.000.000 VNĐ
D. 1.100.000 VNĐ.
- Câu 3 : Ông An có một cái bình đựng rượu, thân bình có hai phần: phần phía dưới là hình nón cụt, phần trên là hình cầu bị cắt bỏ 2 đầu chỏm ( hình 1). Thiết diện qua trục của bình như hình 2. Biết AB = CD cm =16 , EF = 3cm, h = 12cm , h' = 30cm và giá mỗi lít rượu là 100 000 đồng. Hỏi số tiền ông An cần để đổ đầy bình rượu gần với số nào sau đây (giả sử độ dày của vỏ bình rượu không đáng kể)?
A. 1.516.554 đồng
B. 1.372.038 đồng
C. 1.616.664 đồng
D. 1.923.456 đồng
- Câu 4 : Một bình đựng nước dạng hình nón (không có nắp đáy), đựng đầy nước. Biết rằng chiều cao của bình gấp 3 lần bán kính đáy của nó. Người ta thả vào bình đó một khối trụ và đo được thể tích nước tràn ra ngoài . Biết rằng một mặt của khối trụ nằm trên mặt đáy của hình nón và khối trụ có chiều cao bằng đường kính đáy của hình nón (như hình vẽ). Tính bán kính đáy R của bình nước.
A. R = 4(dm)
B. R = 3(dm)
C. R = 5(dm)
D. R = 2(dm)
- Câu 5 : Một cốc nước có dạng hình trụ đứng có chiều cao 12cm, đường kính đáy 4cm,lượng nước trong cốc trong 8cm. Thả vào cốc nước 4 viên bi có cùng đường kính 2cm. Hỏi nước dâng cao cách mép cốc bao nhiêu? (Làm tròn sau dấu phẩy 2 chữ số thập phân, bỏ qua độ dầy cốc)
A. 2,67 cm.
B. 2,75 cm.
C. 2,25 cm.
D. 2,33 cm.
- Câu 6 : Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a. Mặt phẳng (AB'C') tạo với mặt đáy góc 60º . Tính theo a thể tích khối lăng trụ ABC.A'B'C'.
- Câu 7 : Cho hình nón đỉnh S, đáy là đường tròn (O; 5). Một mặt phẳng đi qua đỉnh của hình nón cắt đường tròn đáy tại hai điểm A và B sao cho SA = AB = 8. Tính khoảng cách từ O đến (SAB).
- Câu 8 : Một hình trụ có hai đường tròn đáy nằm trên một mặt cầu bán kính R và có đường cao bằng bán kính mặt cầu. Diện tích toàn phần hình trụ đó bằng
- Câu 9 : Cho hình tròn tâm S, bán kính R = 2 . Cắt đi hình tròn rồi dán lại để tạo ra mặt xung quanh của hình nón như hình vẽ. Tính diện tích toàn phần của hình nón đó.
- Câu 10 : Cho lăng trụ tam giác đều ABC.A’B’C’ có độ dài cạnh đáy bằng 3a và chiều cao bằng 8a. Tính bán kính R của mặt cầu ngoại tiếp tứ diện AB’C’C.
- Câu 11 : Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A, cạnh AC=b, góc ACB=. Góc giữa đường thẳng BC' và mặt phẳng (AA'C'C) bằng 30. Tính theo b diện tích xung quanh của hình lăng trụ ABC.A'B'C'.
- Câu 12 : Một hình nón có góc ở đỉnh bằng 60, đường sinh bằng 2a. Diện tích xung quanh của hình nón là
- Câu 13 : Cắt một hình trụ bằng mặt phẳng vuông góc mặt đáy, ta được thiết diện là một hình vuông có diện tích bằng 16. Biết khoảng cách từ tâm đáy hình trụ đến mặt phẳng bằng 3. Tính thể tích khối trụ
- Câu 14 : Cho và (P): 2x+y-2z+2=0, mặt cầu (S) có tâm nằm trên đường thẳng (d), tiếp xúc với (P) và đi qua A(2;-1;0) có tọa độ tâm I là
- Câu 15 : Cho hình nón tròn xoay có chiều cao h=20(cm), bán kính đáy r=25(cm). Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện là 12(cm). Tính diện tích của thiết diện đó.
- Câu 16 : Cho tam giác OAB vuông cân tại O có AB = 2. Gọi H là trung điểm của AB. Tính diện tích xung quanh Sxq của hình nón sinh bởi khi tam giác OAB quay quanh OH.
- Câu 17 : Cho khối trụ có bán kính đáy R và có chiều cao h = 2R . Hai đáy của khối trụ là hai đường tròn có tâm lần lượt là O và O’. Trên đường tròn (O) ta lấy điểm A cố định. Trên đường tròn (O’) ta lấy điểm B thay đổi. Hỏi độ dài đoạn AB lớn nhất bằng bao nhiêu?
- Câu 18 : Cho hình lăng trụ ABC có diện
- Câu 19 : Cho lăng trụ đều ABC.A'B'C' có tất cả các cạnh đều bằng a (hình vẽ bên dưới). Khoảng cách giữa hai đường thẳng AC và bằng?
- Câu 20 : Cho mặt cầu (S) bán kính R=5cm. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng (cm). Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S) (D không thuộc đường tròn (C)) và tam giác ABC đều. Tính thể tích lớn nhất của tứ diện ABCD.
- Câu 21 : Cho hàm số f(x) có đạo hàm liên tục trên R và có f(1)=1; f(-1)=. Đặt g(x)=. Cho biết đồ thị của y=f'(x) có dạng như hình vẽ dưới đây
- Câu 22 : Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Diện tích xung quanh của khối nón có đỉnh là tâm hình vuông A’B’C’D’ và có đường tròn đáy ngoại tiếp hình vuông ABCD bằng
- Câu 23 : Cho hình nón có độ dài đường sinh bằng 4, góc giữa đường sinh và mặt đáy bằng . Diện tích toàn phần của hình nón đã cho bằng
- Câu 24 : Cho hình lăng trụ đều ABCA'B'C' có tất cả các cạnh bằng a. Diện tích xung quanh của mặt cầu ngoại tiếp hình lăng trụ bằng
- Câu 25 : Cho hình chóp SABC có đáy là tam giác vuông tại B, AC=2a, SA vuông góc với đáy, SA=a. Bán kính r của mặt cầu ngoại tiếp hình chóp SABC bằng
- Câu 26 : Cho hình cầu đường kính AA'=2a. Gọi H là điểm nằm trên đoạn AA’ sao cho AH=. Mặt phẳng (P) đi qua H và vuông góc với AA’ cắt hình cầu theo đường tròn (C). Diện tích của hình tròn (C) bằng
- Câu 27 : Trong không gian, cho tam giác ABC vuông tại A, AB=a, ABC=60. Quay tam giác đó một vòng xung quanh BC, ta được một hình tròn xoay. Diện tích xung quanh của hình tròn xoay đó bằng
- Câu 28 : Cho hình trụ có hai đáy là hai hình tròn tâm O và O', bán kính đáy bằng r và một hình nón có đỉnh là O đáy là hình tròn tâm O'. Biết diện tích xung quanh của hình nón bằng hai lần diện tích đáy của nó. Tính thể tích V của khối trụ giới hạn bởi hình trụ đã cho.
- Câu 29 : Cho hình nón đỉnh S, đáy là hình tròn tâm O và có chiều cao bằng 40. Cắt hình nón bằng một mặt phẳng song song với mặt phẳng đáy, thiết diện thu được là đường tròn tâm O'. Chiều cao h của khối nón đỉnh S đáy là hình tròn tâm O' bằng bao nhiêu, biết rằng thể tích của nó bằng thể tích khối nón đỉnh S, đáy là hình tròn tâm O.
- Câu 30 : Cho khối trụ có bán kính đáy bằng 5 và có diện tích xung quanh bằng 30. Tính thể tích V của khối trụ .
- Câu 31 : Một hình trụ có hai đáy là hai hình tròn tâm O và O’, bán kính đáy R, chiều cao . Mặt phẳng (P) đi qua OO' cắt hình trụ theo một thiết diện có diện tích bằng bao nhiêu?
- Câu 32 : Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B, AB=2, các cạnh bên đều bằng 2. Tính thể tích của khối cầu ngoại tiếp hình chóp SABC bằng
- Câu 33 : Cho khối trụ có bán kính đáy R = 5cm. Khoảng cách 2 đáy h = 7cm . Cắt khối trụ bằng 1 mặt phẳng song song với trục và cách trục 3cm. Diện tích của thiết diện bằng
- Câu 34 : Cho hình hộp ABCD.A'B'C'D' có AB = AD = 2a, AA' = 4a . Lấy M, N, P, Q lần lượt là trung điểm của AA’, BB’, CC’, DD’. Biết hình hộp chữ nhật ABCD.A'B'C'D' nội tiếp khối trụ (T) và lăng trụ ABCD.MNPQ nội tiếp mặt cầu (C). Tỉ số thể tích giữa khối cầu và khối trụ là.
- Câu 35 : Cho lăng trụ tứ giác đều ABCD.A'B'C'D' có cạnh đáy bằng 2a. Khoảng cách từ A đến mặt phẳng (A'BC) bằng . Thể tích khối lăng trụ là.
- Câu 36 : Cho mặt cầu . Mặt cầu (S) cắt trục Oy tại A, B . Mặt phẳng tiếp xúc với mặt cầu (S) tại B là.
- Câu 37 : Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (DBC) và . Khi quay các cạnh của tứ diện xung quanh trục là cạnh AB, có bao nhiêu hình nón được tạo thành?
- Câu 38 : Cho tứ diện đều ABCD cạnh bằng a. Diện tích xung quanh của hình trụ có đáy là đường tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện ABCD là
- Câu 39 : Một hình nón có bán kính đáy bằng 5a, độ dài đường sinh bằng 13a. Tính độ dài đường cao h của hình nón.
- Câu 40 : Hình chữ nhật ABCD có AB=4, AD=2. Gọi M và N lần lượt là trung điểm của AB và CD. Cho hình chữ nhật quay quanh MN ta được một khối tròn xoay có thể tích V bằng
- Câu 41 : Từ miếng tôn hình vuông ABCD cạnh bằng 8 dm, người ta cắt ra hình quạt tâm A bán kính AB = 8 dm (như hình vẽ) để cuộn thành chiếc phễu hình nón (khi đó AB trùng AD). Tính thể tích V của khối nón tạo thành.
- Câu 42 : Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a. Diện tích xung quanh của hình nón đỉnh S với đáy là hình tròn nội tiếp ABCD là
- Câu 43 : Một cái cốc hình trụ không nắp đường kính đáy bằng độ cao của cốc và bằng 10 cm. Hỏi chiếc cốc đó đựng được bao nhiêu nước?
- Câu 44 : Hình nón có bán kính đáy r = 3 cm và đường sinh l = 4 cm. Khi đó diện tích toàn phần của hình nón là
- Câu 45 : Cho hình nón có chiều cao bằng 6 cm, góc giữa trục và đường sinh bằng 300. Thể tích của khối nón là
- Câu 46 : Diện tích xung quanh của hình nón có chiều cao h = 8cm ,bán kính đường tròn đáy r = 6cm bằng
- Câu 47 : Lượng nguyên liệu cần dùng để làm ra một chiếc nón lá được ước lượng qua phép tính diện tích xung quanh của mặt nón. Cứ 1kg lá dùng để làm nón có thể làm ra số nón có tổng diện tích xung quanh là . Hỏi nếu muốn làm ra 1000 chiếc nón lá giống nhau có đường kính vành nón là 50cm, chiều cao 30cm thì cần khối lượng lá gần nhất với con số nào dưới đây? (coi mỗi chiếc nón là có hình dạng là 1 hình nón).
- Câu 48 : Cho mặt cầu (S ) có bán kính 3 . Trong tất cả các khối trụ nội tiếp mặt cầu (S ) (hai đáy của khối trụ là những thiết diện của hình cầu cắt bởi hai mặt phẳng song song), khối trụ có thể tích lớn nhất là bao nhiêu?
- Câu 49 : Mặt phẳng nào dưới đây cắt mặt cầu theo thiết diện là một đường tròn?
- Câu 50 : Tính diện tích S của mặt cầu có đường kính bằng 6.
- Câu 51 : Cho khối nón có bán kính đáy bằng a,
- Câu 52 : Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B,. Khoảng cách giữa hai đường thẳng AC’ và B’C bằng
- Câu 53 : Cho khối trụ có bán kính đáy và chiều cao 2a. Thể tích của nó là
- Câu 54 : Khối lăng trụ tam giác ABC.A’B’C’, M là trung điểm của cạnh AB. Trong các khẳng định sau, khẳng định nào sai?
- Câu 55 : Bán kính mặt cầu tâm I(1;3;5) và tiếp xúc với đường thẳng là:
- Câu 56 : Phương trình mặt phẳng (P) chứa trục Oz và cắt mặt cầu (S): theo đường tròn có bán kính 3 là:
- Câu 57 : Cho lăng trụ đều ABC.A'B'C' có đáy bằng 2a, độ dài cạnh bên bằng . Tính thể tích của khối lăng trụ.
- Câu 58 : Mặt cầu bán kính R có diện tích là
- Câu 59 : Cho khối trụ có bán kính đáy bằng 3, thiết diện qua trục có chu vi bằng 20. Thể tích của khối trụ đã cho bằng
- Câu 60 : Cho khối lăng trụ ABC.A'B'C' có thể tích V, trên các cạnh AA', BB', CC' lần lượt lấy các điểm M, N, P sao cho , , . Tính thể tích khối đa diện ABC'MNP?
- Câu 61 : Cho khối lăng trụ đều ABC.A'B'C' có , góc giữa đường thẳng A'B và mặt phẳng (ABC) bằng . Thể tích khối lăng trụ đã cho bằng
- Câu 62 : Cho khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại B, AB=a, BB'=. Góc giữa đường thẳng A'B và mặt phẳng (BBC'B') bằng
- Câu 63 : Tính chiều cao h của hình trụ biết chiều cao h bằng bán kính đáy và thể tích của khối trụ đó là 8p
- Câu 64 : Cho hình nón đỉnh S có đáy là đường tròn tâm O, bán kính R. Trên đường tròn (O) lấy hai điểm A, B sao cho tam giác OAB vuông. Biết diện tích tam giác SAB bằng , thể tích hình nón đã cho bằng
- Câu 65 : Cho hình lăng trụ tam giác đều
- Câu 66 : Cho đường thẳng . Viết phương trình mặt cầu tâm I (1; 2; -1) cắt d tại các điểm A, B sao cho
- Câu 67 : Diện tích mặt cầu bán kính R bằng
- Câu 68 : Cho hình nón bán kính r=12 nội tiếp hình cầu bán kính r=13 (như hình vẽ). Tính diện tích xung quanh của hình nón.
- Câu 69 : Cho lăng trụ tam giác ABC.A'B'C' có khoảng cách từ A đến mặt phẳng (A'BC) bằng 6a. Khoảng cách từ trung điểm M của cạnh B'C' đến mặt phẳng (A'BC) bằng
- Câu 70 : Cho một khối lăng trụ có thể tích là , đáy là tam giác đều cạnh a. Chiều cao h của khối lăng trụ bằng
- Câu 71 : Có năm đoạn thẳng có độ dài lần lượt là 1cm, 2c, 3cm, 4cm, 5cm. Lấy ngẫu nhiên ra ba đoạn thẳng, tính xác suất để ba đoạn thẳng được chọn ra là độ dài ba cạnh của một tam giác.
- Câu 72 : Cho hình lăng trụ tam giácABC.A'B'C' có đáy là tam giác đều cạnh a. Cạnh bên tạo với đáy một góc . Gọi M là trung điểm của B'C' và I là trung điểm của đoạn A'M. Biết hình chiếu vuông góc của I trên mặt phẳng đáy (ABC) là trọng tâm cả tam giác ABC.Tính thể tích của khối lăng trụ ABC.A'B'C' theo a.
- Câu 73 : Cho tam giác ABC vuông tại A, AB=2, . Độ dài đường sinh của hình nón khi quay tam giác ABC quanh trục AB là
- Câu 74 : Cho hình trụ có chiều cao bằng 8 nội tiếp trong hình cầu có bán kính bằng 5. Tính thể tích khối trụ này.
- Câu 75 : Cho hình nón đỉnh O, I là tâm đường tròn đáy. Mặt trung trực của OI chia khối chóp thành hai phần. Tỉ số thể tích của hai phần chứa đỉnh S và phần không chứa S là:
- Câu 76 : Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, AA'=.Biết rằng hình chiếu vuông góc của A’ lên (ABC) là trung điểm BC. Thể tích của khối lăng trụ ABC.A’B’C’ là
- Câu 77 : Một hình nón có độ dài đường sinh bằng đường kính đáy. Diện tích hình tròn đáy của hình nón bằng . Tính đường cao h của hình nón.
- Câu 78 : Cho lăng trụ tam giác đều ABC.A’B’C’ có độ dài cạnh đáy bằng a, góc giữa đường thẳng AB’ và mặt phẳng (ABC) bằng . Tính thể tích V của khối trụ ngoại tiếp lăng trụ đã cho.
- Câu 79 : Gọi l, h, r lần lượt là độ dài đường sinh, chiều cao và bán kính mặt đáy của hình nón. Diện tích xung quanh của hình nón là
- Câu 80 : Cho tam giác SOA vuông tại O có OA=4cm, SA=5cm, quay tam giác SOA xung quanh cạnh SO được hình nón. Thể tích của khối nón tương ứng là:
- Câu 81 : Cho hình lăng trụ tứ giác đều có các cạnh đều bằng a. Thể tích khối lăng trụ đều là
- Câu 82 : Cho hình trụ có bán kính đáy bằng 1cm . Một mặt phẳng qua trục của hình trụ và cắt hình trụ theo thiết diện là hình vuông. Tính thể tích của khối trụ đã cho.
- Câu 83 : Tính bán kính R của mặt cầu ngoại tiếp một hình lập phương có cạnh bằng a.
- Câu 84 : Khi cắt khối trụ (T) bởi một mặt phẳng qua trục của nó ta được thiết diện là một hình vuông có diện tích bằng . Tính thể tích V của khối trụ (T).
- Câu 85 : Thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a là
- Câu 86 : Cho khối nón (N) có chiều cao h=20cm, bán kính đáy r=25cm. Gọi là mặt phẳng đi qua đỉnh của (N) và cách tâm của mặt đáy 12cm. Khi đó cắt (N) theo một thiết diện có diện tích là
- Câu 87 : Cho hình nón tròn xoay có chiều cao h, đường sinh l và bán kính đường tròn đáy bằng R. Diện tích toàn phần của hình nón bằng
- Câu 88 : Thể tích khối nón có bán kính đáy bằng 2a và chiều cao bằng 3a là
- Câu 89 : Cho hình trụ có diện tích toàn phần là và có thiết diện cắt bởi mặt phẳng qua trục là hình vuông. Thể tích khối trụ đã cho bằng
- Câu 90 : Cho hình hộp chữ nhật ABCD.A'B'C'D' có các kích thước là AB=2, AD=3, AA'=4. Gọi (N) là hình nón có đỉnh là tâm của mặt ABB'A' và đường tròn đáy là đường tròn ngoại tiếp hình chữ nhật. Thể tích của khối nón (N) là
- Câu 91 : Để định vị một trụ điện, người ta cần đúc một khối bê tông có chiều cao h=1,5m gồm:
- Câu 92 : Khối trụ ABC.A'B'C' có thể tích bằng V. Tính thể tích của khối đa diện BAA'C'C
- Câu 93 : Cho hình lăng trụ ABCD.A'B'C'D' có đáy là hình vuông cạnh a, cạnh bên AA'=2a, góc tạo bởi cạnh bên và mặt đáy bằng . Thể tích của khối lăng trụ là
- Câu 94 : Cho khối nón có độ dài đường sinh bằng 5 và diện tích đáy . Thể tích khối nón đã cho bằng
- Câu 95 : Một cái phễu có dạng hình nón, chiều cao của phễu là 20cm. Người ta đổ một lượng nước vào phễu sao cho chiều cao của cột nước trong phễu bằng 10cm (hình H1). Nếu bịt kín miệng phễu rồi lật ngược phễu lên (hình H2) thì chiều cao của cột nước trong phễu gần bằng với giá trị nào sau đây?
- Câu 96 : Một bể nước lớn của khu công nghiệp có phần chứa nước là một khối nón đỉnh S phía dưới (hình vẽ), đường sinh SA=27 mét. Có một lần lúc bể chứa đầy nước, người ta phát hiện nước trong bể không đạt yêu cầu về vệ sinh nên lãnh đạo khu công nghiệp cho thoát hết nước để làm vệ sinh bể chứa. Công nhân cho thoát nước ba lần qua một lổ ở đỉnh S. Lần thứ nhất khi mực nước tới điểm M thuộc SA thì dừng, lần thứ hai khi mực nước tới điểm N thuộc SA thì dừng, lần thứ ba mới thoát hết nước. Biết rằng lượng nước mỗi lần thoát bằng nhau. Tính độ dài đoạn MN. (Hình vẽ 4: Thiết diện qua trục của hình nón nước).
- Câu 97 : Hai chiếc ly đựng chất lỏng giống hệt nhau, mỗi chiếc có phần chứa chất lỏng là một khối nón có chiều cao 2 dm (mô tả như hình vẽ). Ban đầu chiếc ly thứ nhất chứa đầy chất lỏng, chiếc ly thứ hai để rỗng. Người ta chuyển chất lỏng từ ly thứ nhất sang ly thứ hai sao cho độ cao của cột chất lỏng trong ly thứ nhất còn 1dm. Tính chiều cao h của cột chất lỏng trong ly thứ hai sau khi chuyển (độ cao của cột chất lỏng tính từ đỉnh của khối nón đến mặt chất lỏng - lượng chất lỏng coi như không hao hụt khi chuyển. Tính gần đúng h với sai số không quá 0,01dm).
- Câu 98 : Một cây thông Noel có dạng hình nón với chiều dài đường sinh bằng 60cm và bán kính đáy r=10cm. Một chú kiến bắt đầu xuất phát từ một đỉnh nằm trên mặt đáy hình nón và có dự định bò một vòng quanh cây thông sau đó quay trở lại vị trí xuất phát ban đầu. Tính quãng đường ngắn nhất mà chú kiến có thể đi được là bao nhiêu?
- Câu 99 : Giá trị lớn nhất của thể tích khối nón nội tiếp trong khối cầu có bán kính R là
- Câu 100 : Cho khối nón đỉnh O, chiều cao là h. Một khối nón khác có đỉnh là tâm I của đáy và đáy là một thiết diện song song với đáy của hình nón đã cho. Để thể tích của khối nón đỉnh I lớn nhất thì chiều cao của khối nón này bằng bao nhiêu?
- Câu 101 : Cho hình nón đỉnh S, đáy là hình tròn tâm O, góc ở đỉnh bằng . Trên đường tròn đáy, lấy điểm A cố định và điểm M di động. Có bao nhiêu vị trí điểm của điểm M để diện tích tam giác SAM đạt giá trị lớn nhất?
- Câu 102 : Cho hình nón (N) có đường cao SO=h và bán kính đáy bằng R, gọi M là điểm trên đoạn SO, đặt OM=x, 0<x<h. (C) là thiết diện của mặt phẳng (P) vuông góc với trục SO tại M, với hình nón (N). Tìm x để thể tích khối nón đỉnh O đáy là (C) lớn nhất.
- Câu 103 : Cho hai mặt phẳng (P) và (Q) song song với nhau và cắt một mặt cầu tâm O bán kính R tạo thành hai đường tròn có cùng bán kính. Xét hình nón có đỉnh trùng với tâm của một trong hai đường tròn và đáy trùng với đường tròn còn lại. Tính khoảng cách giữa (P) và (Q) để diện tích xung quanh hính nón đó là lớn nhất.
- Câu 104 : Cho nửa đường tròn đường kính AB=2R và điểm C thay đổi trên nửa đường tròn đó, đặt và gọi H là hình chiếu vuông góc của C lên AB. Tìm sao cho thể tích vật thể tròn xoay tạo thành khi quay tam giác ACH quanh trục AB đạt giá trị lớn nhất.
- Câu 105 : Cho tứ diện đều ABCD có một đường cao . Gọi I là trung điểm . Mặt phẳng (BCI) chia tứ diện ABCD thành hai tứ diện. Tính tỉ số hai bán kính của hai mặt cầu ngoại tiếp hai tứ diện đó.
- Câu 106 : Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi lần lượt là hình chiếu của A trên SB, SC. Tính theo a bán kính R của mặt cầu đi qua năm điểm A,B, C, .
- Câu 107 : Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB=2a, BC=a, hình chiếu của S lên (ABCD) là trung điểm H của AD, . Diện tích mặt cầu ngoại tiếp hình chóp S.ABCD bằng bao nhiêu?
- Câu 108 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a, AD=2a tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M,N lần lượt là trung điểm các cạnh AD,DC. Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.DMN.
- Câu 109 : Cho khối chóp S.ABCD có đáy là hình vuông, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Mặt cầu ngoại tiếp khối chóp S.ABCD có diện tích . Khoảng cách giữa hai đường thẳng SA và BD.
- Câu 110 : Cho tứ diện ABCD có AB=BC=CD=2, AC=BD=1, AD=. Tính bán kính của mặt cầu ngoại tiếp tứ diện đã cho.
- Câu 111 : Cho hình chóp S.ABC có đáy là tam giác vuông tại A, AB=a, AC=2a. Mặt bên (SAB), (SCA) lần lượt là các tam giác vuông tại B, C. Biết thể tích khối chóp S.ABC bằng . Bán kính mặt cầu ngoại tiếp hình chóp S.ABC?
- Câu 112 : Cho lăng trụ đứng có chiều cao bằng h không đổi, một đáy là tứ giác ABCD với A,B, C, D di động. Gọi I là giao của hai đường chéo AC và BD của tứ giác đó. Cho biết IA.IC=IB.ID=. Tính giá trị nhỏ nhất bán kính mặt cầu ngoại tiếp hình lăng trụ đã cho.
- Câu 113 : Một hình hộp chữ nhật P nội tiếp trong một hình cầu có bán kính R. Tổng diện tích các mặt của P là 384 và tổng độ dài các cạnh của P là 112. Bán kính R của hình cầu là.
- Câu 114 : Cho hình chóp S.ABC có , AC=b, AB=c, . Gọi B', C' lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính bán kính mặt cầu ngoại tiếp hình chóp A.BCC'B' theo b, c, .
- Câu 115 : Một hình trụ có bán kính đáy bằng R và thiết diện đi qua trục là hình vuông. Tính thể tích V của khối lăng trụ tứ giác đều nội tiếp hình trụ.
- Câu 116 : Cho hình lăng trụ đều ABC.A'B'C', biết góc giữa hai mặt phẳng (A'BC) và (ABC) bằng , diện tích tam giác A'BC bằng . Tính diện tích xung quanh của hình trụ ngoại tiếp hình lăng trụ ABC.A'B'C'.
- Câu 117 : Cho hình lăng trụ tam giác đều ABC.A'B'C' có độ dài cạnh đáy bằng a, chiều cao là h. Tính thể tích V của khối trụ ngoại tiếp hình lăng trụ.
- Câu 118 : Cho hình trụ có chiều cao bằng cm. Biết rằng một mặt phẳng không vuông góc với đáy và cắt hai mặt đáy theo hai dây cung song song AB, A'B' mà AB=A'B'=6cm, diện tích tứ giác ABB'A' bằng 60. Tính bán kính đáy của hình trụ.
- Câu 119 : Cho tứ diện ABCD cạnh a. Diện tích xung quanh hình trụ có đáy là đường tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiếu cao tứ diện ABCD là:
- Câu 120 : Một hình trụ có thiết diện qua trục là hình vuông, diện tích xung quanh bằng . Tính thể tích V của lăng trụ lục giác đều nội tiếp hình trụ.
- Câu 121 : Tính thể tích V của khối nón ngoại tiếp hình tứ diện đều có cạnh bằng a (khối nón có đỉnh là một đỉnh của tứ diện và có đáy là hình tròn đi qua 3 đỉnh còn lại của tứ diện).
- Câu 122 : Một khối cầu tâm I bán kính R bị cắt bởi một mặt phẳng (P) theo đường tròn giao tuyến (C), tạo thành hai khối chỏm cầu. Gọi M là điểm bất kỳ thuộc đường tròn (C), biết rằng góc giữa đường thẳng IM và mặt phẳng (P) bằng . Tính theo R thể tích khối chỏm cầu nhỏ tạo thành.
- Câu 123 : Khối cầu (S) có tâm, đường kính AB=2R. Cắt (S) bởi một mặt phẳng vuông góc với đường kính AB ta được thiết diện là hình tròn (C) rồi bỏ đi phần lớn hơn. Tính thể tích phần còn lại theo R, biết hình nón đỉnh I và đáy là hình tròn (C) có góc ở đỉnh bằng .
- Câu 124 : Một hình nón có đỉnh S có bán kính đáý bằng , góc ở đỉnh là 120. Thiết diện qua đỉnh của hình nón là 1 tam giác. Diện tích lớn nhất của tam giác là bao nhiêu?
- Câu 125 : Cắt một khối nón tròn xoay có bán kính đáy bằng R, đường sinh 2R bởi một mặt phẳng qua tâm đáy và tạo với mặt đáy một góc tính tỷ số thể tích của hai phần khối nón chia bởi mặt phẳng ?
- Câu 126 : Một hình trụ có bán kính đáy r=5cm và khoảng cách giữa hai đáy h=7cm. Cắt khối trụ bởi một mặt phẳng song song với trục và cách trục 3cm. Diện tích của thiết diện được tạo thành là:
Xem thêm
- - Trắc nghiệm Toán 12 Chương 2 Bài 1 Lũy thừa
- - Trắc nghiệm Toán 12 Chương 2 Bài 2 Hàm số lũy thừa
- - Trắc nghiệm Toán 12 Chương 2 Bài 4 Hàm số mũ và hàm số lôgarit
- - Trắc nghiệm Toán 12 Chương 2 Bài 5 Phương trình mũ và phương trình lôgarit
- - Trắc nghiệm Toán 12 Chương 2 Bài 6 Bất phương trình mũ và bất phương trình lôgarit
- - Trắc nghiệm Toán 12 Chương 3 Bài 1 Nguyên hàm
- - Trắc nghiệm Toán 12 Chương 3 Bài 2 Tích phân
- - Trắc nghiệm Toán 12 Chương 3 Bài 3 Ứng dụng của tích phân trong hình học
- - Trắc nghiệm Toán 12 Bài 1 Số phức
- - Trắc nghiệm Toán 12 Bài 2 Cộng, trừ và nhân số phức