Đề thi chính thức vào 10 môn Toán Sở GD&ĐT Nghệ An...
- Câu 1 : a) So sánh \(2\sqrt 3 + \sqrt {27} \) và \(\sqrt {74} .\)b) Chứng minh đẳng thức: \(\left( {\frac{1}{{\sqrt x - 2}} - \frac{1}{{\sqrt x + 2}}} \right).\frac{{x - 4}}{4} = 1,\) với \(x \ge 0\) và \(x \ne 4.\)c) Tìm giá trị của \(m\) để đồ thị hàm số \(y = 3x + m\) đi qua điểm \(A\left( {1;\;2} \right).\)
A \(\begin{array}{l}a)\,\,2\sqrt 3 + \sqrt {27} \, < \,\sqrt {74} \\c)\,\,m = - 1\end{array}\)
B \(\begin{array}{l}a)\,\,2\sqrt 3 + \sqrt {27} \, > \,\sqrt {74} \\c)\,\,m = - 1\end{array}\)
C \(\begin{array}{l}a)\,\,2\sqrt 3 + \sqrt {27} \, > \,\sqrt {74} \\c)\,\,m = 1\end{array}\)
D \(\begin{array}{l}a)\,\,2\sqrt 3 + \sqrt {27} \, = \,\sqrt {74} \\c)\,\,m = 1\end{array}\)
- Câu 2 : Cho phương trình \({x^2} + 2x + m - 1 = 0\;\;\;\;\left( * \right),\) trong đó \(m\) là tham số.a) Giải phương trình \(\left( * \right)\) khi \(m = - 2.\)b) Tìm \(m\) để phương trình \(\left( * \right)\) có hai nghiệm phân biệt \({x_1}\) và \({x_2}\) thỏa mãn điều kiện \({x_1} = 2{x_2}.\)
A \(\begin{array}{l}a)\,\,S = \left\{ { - 3;\,1} \right\}\\b)\,\,m = \frac{{17}}{9}\end{array}\)
B \(\begin{array}{l}a)\,\,S = \left\{ {3;\, - 1} \right\}\\b)\,\,m = \frac{1}{9}\end{array}\)
C \(\begin{array}{l}a)\,\,S = \left\{ { - 3;\,1} \right\}\\b)\,\,m = \frac{1}{9}\end{array}\)
D \(\begin{array}{l}a)\,\,S = \left\{ {3;\, - 1} \right\}\\b)\,\,m = \frac{{17}}{9}\end{array}\)
- Câu 3 : Cho đường tròn (O) có dây BC cố định không đi qua tâm O. Điểm A di động trên (O) sao cho tam giác ABC có 3 góc nhọn. Các đường cao BE, CF của tam giác ABC (E thuộc AC, F thuộc AB) cắt nhau tại H. Gọi K là giao điểm của hai đường thẳng EF và BC, đoạn thẳng KA cắt (O) tại điểm M. Chứng minh rằng:a) BCEF là tứ giác nội tiếp.b) KM.KA = KE.KF.c) Đường thẳng MH luôn đi qua một điểm cố định khi A thay đổi.
- Câu 4 : Giải hệ phương trình: \(\left\{ \begin{array}{l}x\left( {2x - 2y + 1} \right) = y\\y + 2\sqrt {1 - x - 2{x^2}} = 2\left( {1 + {y^2}} \right)\end{array} \right..\)
A \(\left( {x,\,y} \right) = \left\{ {\left( { - \frac{1}{2};\,0} \right);\,\left( { - \frac{1}{2};\,\frac{1}{2}} \right)} \right\}\)
B \(\left( {x,\,y} \right) = \left\{ {\left( {\frac{1}{2};\,0} \right);\,\left( {\frac{1}{2};\,\frac{1}{2}} \right);\,\left( {0;\,0} \right)} \right\}\)
C \(\left( {x,\,y} \right) = \left\{ {\left( { - \frac{1}{2};\,0} \right);\,\left( { - \frac{1}{2};\,\frac{1}{2}} \right);\,\left( {0;\,0} \right)} \right\}\)
D Đáp án khác.
- - Trắc nghiệm Toán 9 Bài 1 Căn bậc hai
- - Trắc nghiệm Toán 9 Bài 2 Căn thức bậc hai và hằng đẳng thức căn bậc hai
- - Trắc nghiệm Toán 9 Bài 3 Liên hệ giữa phép nhân và phép khai phương
- - Trắc nghiệm Toán 9 Bài 4 Liên hệ giữa phép chia và phép khai phương
- - Trắc nghiệm Toán 9 Bài 6 Biến đổi đơn giản biểu thức chứa căn thức bậc hai
- - Trắc nghiệm Toán 9 Bài 8 Rút gọn biểu thức chứa căn bậc hai
- - Trắc nghiệm Toán 9 Bài 9 Căn bậc ba
- - Trắc nghiệm Toán 9 Bài 1 Hàm số y = ax^2 (a ≠ 0)
- - Trắc nghiệm Toán 9 Bài 2 Đồ thị của hàm số y = ax^2 (a ≠ 0)
- - Trắc nghiệm Toán 9 Bài 3 Phương trình bậc hai một ẩn