Đăng ký

Trả lời câu hỏi Bài 10 trang 102 Toán 8 Tập 1

Đề bài

Cho hình 96b, trong đó các đường thẳng a, b, c, d song song với nhau.

Chứng minh rằng:

a) Nếu các đường thẳng a, b, c, d song song cách đều thì EF = FG = GH.

b) Nếu EF = FG = GH thì các đường thẳng a, b, c, d song song cách đều.

 

Hướng dẫn giải

a) Các đường thẳng a, b, c, d song song cách đều ⇒ AB = BC = CD

⇒ B là trung điểm của AC; C là trung điểm của BD

- Hình thang AEGC (AE // GC) có B là trung điểm của AC và BF song song hai cạnh đáy

⇒ F là trung điểm EG (định lí đường trung bình của hình thang)

⇒ EF = FG

- Chứng minh tương tự ⇒ G là trung điểm FH

⇒ FG = GH

Vậy EF = FG = GH