Đăng ký

Bài 40 trang 43 Giải tích 12 Nâng cao

Đề bài

Bài 40

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số

           \(y = {x^3} + 3{x^2} - 4\)

b) Viết phương trình tiếp tuyến của đồ thị tại điểm uốn.

c) Chứng minh rằng điểm uốn là tâm đối xứng của đồ thị.

Hướng dẫn giải

a) Tập xác đinh: \(D=\mathbb R\)

Sự biến thiên:

\(\eqalign{
& y' = 3{x^2} + 6x \cr
& y' = 0 \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = - 2 \hfill \cr} \right. \cr} \)

- Hàm số đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( {0; + \infty } \right)\)

- Hàm số nghịch biến trên khoảng \((-2;0)\)

- Cực trị:

  Hàm số đạt cực đại tại \(x=-2\;;y_{CĐ}=0\)

  Hàm số đạt cực tiểu tại \(x=0\;;y_{CT}=-4\)

- Giới hạn:

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } \left( {{x^3} + 3{x^2} - 4} \right) = + \infty \cr
& \mathop {\lim }\limits_{x \to - \infty } \left( {{x^3} + 3{x^2} - 4} \right) = - \infty \cr} \)

\(\eqalign{
& y'' = 6x + 6 \cr
& y'' = 0 \Leftrightarrow x = - 1 \cr} \)

Điểm uốn \(I(-1;-2)\)

- Bảng biến thiên:

Đồ thị:

Đồ thị hàm số nhận điiểm \(I(-1;-2)\) làm tâm đối xứng.

b) \(y'(-1)=-3\)

Phương trình tiếp tuyến với đồ thị tại \(I(-1;-2)\) là:

\(y=-3(x+1)+(-2) \Leftrightarrow y =  - 3x - 5\)

c) Đồ thị nhận \(I(-1;-2)\) làm tâm đối xứng khi và chỉ khi:

\(\eqalign{
& y\left( { - 1 + x} \right) + y\left( { - 1 - x} \right) = 2.\left( { - 2} \right) \cr
& \Leftrightarrow {\left( { - 1 + x} \right)^3} + 3{\left( { - 1 + x} \right)^2} - 4 + {\left( { - 1 - x} \right)^3} + 3{\left( { - 1 - x} \right)^2} - 4 = - 4 \cr
& \Leftrightarrow - 1 + 3x - 3{x^2} + {x^3} + 3 - 6x + 3{x^2} - 4 - 1 - 3x - 3{x^2} - {x^3} + 3 + 6x + 3{x^2} - 4 = - 4 \cr
& \Leftrightarrow - 4 = - 4\,\,\forall x \cr} \)

\(\Leftrightarrow I(-1;-2)\) là tâm đối xứng của đồ thị.

shoppe