Bài tập Định lí đảo và hệ quả của định lí Ta-lét (...
- Câu 1 : Tính ET trong trường hợp sau biết rằng FG // HT :
A. ET = 4,5
B. ET = 3
C. ET = 2
D. Cả 3 đáp án trên đều sai
- Câu 2 : Cho hình bên. Chọn câu trả lời đúng?
A.
B.
C.
D. Cả 3 đáp án đều sai.
- Câu 3 : Cho tam giác ABC có AB = 4,5 cm. Một đường thẳng d cắt đoạn AB, AC lần lượt tại M và N sao cho AM = 1,5cm, AN = 2 cm và NC = 5cm. Tìm khẳng định sai
A. MN// BC
B. MB = 3cm
C. Đường thẳng MN và BC có điểm chung.
- Câu 4 : Cho tam giác ABC, đường thẳng d song song với BC cắt 2 cạnh AB và AC lần lượt tại M và N. Biết rằng . Tỉnh tỉ số chu vi tam giác AMN và ABC ?
A.
B. 1
C.
D.
- Câu 5 : Cho hình thang ABCD (AB // CD). Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E, F. Đẳng thức nào sau đây đúng?
A.
B.
C.
D.
- Câu 6 : Cho tam giác ABC, đường trung tuyến AD. Gọi K là điểm thuộc đoạn thẳng AD sao cho . Gọi E là giao điểm của BK và AC. Tính tỉ số .
A. 4
B.
C.
D.
- Câu 7 : Cho tam giác ABC, điểm D trên cạnh BC sao cho , điểm E trên đoạn AD sao cho . Gọi K là giao điểm của BE với AC. Tính tỉ số
A.
B.
C.
D.
- Câu 8 : Cho hình thang ABCD (AB // CD) có diện tích 36, AB = 4cm, CD = 8cm. Gọi O là giao điểm của hai đường chéo. Tính diện tích tam giác COD.
A. 8
B. 6
C. 16
D. 32
- Câu 9 : Cho hình thang ABCD (AB // CD) có diện tích 48, AB = 4cm, CD = 8cm. Gọi O là giao điểm của hai đường chéo. Tính diện tích tam giác COD.
A.
B. 15
C. 16
D. 32
- Câu 10 : Cho điểm M thuộc đoạn thẳng AB. Vẽ về một phía của AB các tam giác đều AMC và MBD. Gọi E là giao điểm của AD và MC, F là giao điểm của BC và DM. Đặt MA = a, MB = b. Tính ME, MF theo a và b.
A.
B.
C.
D.
- Câu 11 : Cho điểm M thuộc đoạn thẳng AB. Vẽ về một phía của AB các tam giác đều AMC và MBD. Gọi E là giao điểm của AD và MC, F là giao điểm của BC và DM. Tam giác MEF là tam giác gì? Chọn đáp án đúng nhất?
A. Tam giác MEF đều
B. Tam giác MEF cân tại M
C. Tam giác MEF cân tại N
D. Cả A, B, C đều sai
- Câu 12 : Cho điểm M thuộc đoạn thẳng AB sao cho MA = 2MB. Vẽ về một phía của AB các tam giác đều AMC và MBD. Gọi E là giao điểm của AD và MC, F là giao điểm của BC và DM. Đặt MB = a. Tính ME, MF theo a.
A.
B.
C.
D.
- Câu 13 : Cho điểm M thuộc đoạn thẳng AB sao cho MA = 2MB. Vẽ về một phía của AB các tam giác đều AMC và MBD. Gọi E là giao điểm của AD và MC, F là giao điểm của BC và DM. Chọn khẳng định đúng nhất.
A.
B.
C.
D.
- Câu 14 : Cho tứ giác ABCD, lấy bất kỳ E Є BD. Qua E vẽ EF song song với AD (F thuộc AB), vẽ EG song song với DC (G thuộc BC). Chọn khẳng định sai.
A.
B.
C. FG // AC
D. FG // AD
- Câu 15 : Cho tứ giác ABCD có O là giao điểm hai đường chéo. Đường thẳng qua A và song song với BC cắt BD ở E. Đường thẳng qua B song song với AD cắt AC ở G. Chọn kết luận sai?
A.
B.
C.
D. EG // CD
- Câu 16 : Cho tam giác ABC có AM là đường trung tuyến, N là điểm trên đoạn thẳng AM. Gọi D là giao điểm của CN và AB, E là giao điểm của BN và AC. Chọn khẳng định đúng nhất.
A. DE// BC
B.
C. Cả A, B đều đúng
D. Cả A, B đều sai
- Câu 17 : Cho tam giác ABC, điểm I nằm trong tam giác. Các tia AI, BI, CI cắt các cạnh BC, AC, AB theo thứ tự ở D, E, F. Tổng bằng tỉ số nào dưới đây?
A.
B.
C.
D.
- - Trắc nghiệm Toán 8 Bài 1 Liên hệ giữa thứ tự và phép cộng
- - Trắc nghiệm Bài 2 Liên hệ giữa thứ tự và phép nhân - Luyện tập - Toán 8
- - Trắc nghiệm Toán 8 Bài 1 Nhân đơn thức với đa thức
- - Trắc nghiệm Hình học 8 Bài 1 Tứ giác
- - Trắc nghiệm Toán 8 Bài 2 Nhân đa thức với đa thức
- - Trắc nghiệm Toán 8 Bài 3 Những hằng đẳng thức đáng nhớ
- - Trắc nghiệm Toán 8 Bài 4 Những hằng đẳng thức đáng nhớ (tiếp)
- - Trắc nghiệm Toán 8 Bài 5 Những hằng đẳng thức đáng nhớ (tiếp)
- - Trắc nghiệm Toán 8 Bài 6 Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
- - Trắc nghiệm Toán 8 Bài 7 Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức