Đề thi khảo sát chất lượng môn Toán 11 Trường THPT...
- Câu 1 : Tính tổng \(S = \frac{{C_n^0}}{{C_{n + 2}^1}} + \frac{{C_n^1}}{{C_{n + 2}^2}} + \frac{{C_n^2}}{{C_{n + 2}^3}} + ... + \frac{{C_n^n}}{{C_{n + 2}^{n + 1}}}\) ta được \(S = \frac{n}{a} + \frac{1}{b};\;a,b \in {N^*}\). Khi đó a + b bằng
A. 7
B. 9
C. 6
D. 8
- Câu 2 : Trong các hàm số sau, hàm số nào là hàm số chẵn trên tập xác định của hàm số đó?
A. \(y = \cot \frac{x}{2}.\)
B. \(y = \tan \frac{x}{2}.\)
C. \(y = \sin \frac{x}{2}.\)
D. \(y = \cos \frac{x}{2}.\)
- Câu 3 : Một cấp số cộng có \({u_1} = 5;\;{u_{12}} = 38\). Giá trị của \(u_{10}\) là
A. 35
B. 24
C. 32
D. 30
- Câu 4 : Cho tam giác đều ABC. Điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho \(AE = CF.\) (Giả thiết hướng đi từ A đến B đến C ngược chiều kim đồng hồ, E không trùng với A và B). Phép quay nào trong các phép quay sau đây biến CF thành AE?
A. \(Q_G^{{{120}^o}}\) (G là trọng tâm tam giác ABC).
B. \(Q_B^{{{60}^o}}.\)
C. \(Q_M^{{{180}^o}}\) (M là trung điểm đoạn AC).
D. \(Q_C^{{{60}^o}}\)
- Câu 5 : Hệ số của số hạng thứ 4 trong khai triển nhị thức Niu – tơn của biểu thức \({({x^2} - 2)^{12}}\) là:
A. - 1760
B. 126720
C. -112640.
D. 7920
- Câu 6 : Tập nghiệm của bất phương trình \(\left( {x - 1} \right)\left( {x - 3} \right) \le \frac{{18}}{{{x^2} - 4{\rm{x}} - 4}}\) là:
A. \(\left[ {2 - \sqrt {10} ;2 - 2\sqrt 2 } \right) \cup \left( {2 + 2\sqrt 2 ;2 + \sqrt {10} } \right]\)
B. \(\left[ {2 - \sqrt {10} ;2 - 2\sqrt 2 } \right) \cap \left( {2 + 2\sqrt 2 ;2 + \sqrt {10} } \right]\)
C. \(\left[ {\frac{9}{2};5} \right)\)
D. \(\left( {2 - \sqrt {10} ;2 - 2\sqrt 2 } \right) \cup \left( {2 + 2\sqrt 2 ;2 + \sqrt {10} } \right)\)
- Câu 7 : Tập xác định của hàm số \(y = \frac{{\sin x - 1}}{{\tan x}}\) là
A. \(D = R\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in Z} \right\}.\)
B. \(D = R\backslash \left\{ {\frac{{k\pi }}{2},k \in Z} \right\}.\)
C. \(D = R\backslash \left\{ {k\pi ,k \in Z} \right\}.\)
D. \(D=R\)
- Câu 8 : Trong các dãy số sau, dãy số nào là một cấp số cộng?
A. \({u_n} = \frac{{n + 1}}{n}.\)
B. \({u_n} = {n^2} + 1.\)
C. \({u_n} = 2n + 5.\)
D. \({u_n} = {3^n}.\)
- Câu 9 : Gọi M là tập tất cả các số tự nhiên gồm 6 chữ số đôi một khác nhau có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \). Chọn ngẫu nhiên một số từ tập M. Xác suất để số được chọn là một số chẵn đồng thời thỏa mãn \({a_1} > {a_2} > {a_3} > {a_4} > {a_5} > {a_6}\) là
A. \(\frac{1}{{360}}.\)
B. \(\frac{1}{{36}}.\)
C. \(\frac{{37}}{{34020}}.\)
D. \(\frac{{74}}{{567}}.\)
- Câu 10 : Trong mặt phẳng với hệ tọa độ Oxy cho hình thang vuông ABCD vuông tại A và D, biết \(AB = AD = \frac{1}{3}CD\). Giao điểm của AC và BD là E(3;-3); điểm F(5;-9) thuộc cạnh AB sao cho \(AF = 5FB\). Tìm tọa độ đỉnh D biết rằng đỉnh A có tung độ âm?
A. \(D(15; - 15).\)
B. \(D( - 15;15).\)
C. \(D(15;15).\)
D. \(D( - 15; - 15).\)
- Câu 11 : Trong mặt phẳng với hệ trục toạ độ Oxy, phép tịnh tiến theo véctơ \(\overrightarrow v \) biến đường tròn \(\left( {{C_1}} \right):\,{\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} = 16\) thành đường tròn \(\left( {{C_2}} \right):\,{\left( {x - 9} \right)^2} + {\left( {y + 6} \right)^2} = 16\) thì
A. \(\overrightarrow v \left( {7; - 5} \right).\)
B. \(\overrightarrow v \left( {-7; - 5} \right).\)
C. \(\overrightarrow v \left( { - 11;7} \right).\)
D. \(\overrightarrow v \left( { 11;-7} \right).\)
- Câu 12 : Một hình vuông ABCD có cạnh bằng 1, có diện tích là \(S_1\). Nối bốn trung điểm \({A_1},{B_1},{C_1},{D_1}\) lần lượt của bốn cạnh \(AB,BC,CD,DA\) ta được hình vuông \({A_1}{B_1}{C_1}{D_1}\) có diện tích là \(S_2\). Tương tự nối bốn trung điểm \({A_2},{B_2},{C_2},{D_2}\) lần lượt của bốn cạnh \({A_1}{B_1},{B_1}{C_1},{C_1}{D_1},{D_1}{A_1}\) ta được hình vuông \({A_2}{B_2}{C_2}{D_2}\) có diện tích là \(S_3\). Cứ tiếp tục như vậy ta thu được các diện tích \({S_4},{S_5},{S_6},...{S_n}.\) Tính \(\lim ({S_1} + {S_2} + {S_3} + ... + {S_n})?\)
A. 1
B. 2
C. \(\frac{1}{2}.\)
D. \(\frac{1}{4}.\)
- Câu 13 : Trục đối xứng của đồ thị hàm số \(y = a{x^2} + bx + c\;\left( {a \ne 0} \right)\) là đường thẳng
A. \(x = \frac{{ - b}}{{2a}}.\)
B. \(y = \frac{{ - b}}{{2a}}.\)
C. \(x = \frac{{ - b}}{a}.\)
D. \(y = \frac{{ - b}}{a}.\)
- Câu 14 : Trong các dãy số sau, dãy số nào là dãy số có giới hạn 0?
A. \({u_n} = \frac{{{n^3} + n}}{{{n^2} + 2}}.\)
B. \({u_n} = \frac{{2{n^2} - 1}}{{{n^2} + 2n + 3}}.\)
C. \({u_n} = \frac{{{n^2} + 2n - 1}}{{{n^2} - {n^3}}}.\)
D. \({u_n} = \frac{{3 - {n^2}}}{{{n^2} + 1}}.\)
- Câu 15 : Biết rằng khi \(m \in \left[ {a,b} \right]\) thì phương trình \(cos2x + {\sin ^2}x + 3\cos x - m = 5\) có nghiệm. Khẳng định nào sau đây là đúng?
A. \(a+b=2\)
B. \(a+b=-2\)
C. \(a+b=8\)
D. \(a+b=-8\)
- Câu 16 : Tổng tất cả các nghiệm thuộc khoảng \((0;200\pi )\) của phương trình \({\sin ^4}\frac{x}{2} + {\cos ^4}\frac{x}{2} = 1 - 2\sin x\) là
A. \(19800\pi .\)
B. \(20100\pi .\)
C. \(20000\pi .\)
D. \(19900\pi .\)
- Câu 17 : Số giờ có ánh sáng của một thành phố A trong ngày thứ t của năm 2018 được xác định bởi công thức \(y = 4.\sin \left| {\frac{\pi }{{178}}(t - 60)} \right| + 10,\;t \in Z;\;0 < t \le 365.\) Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng nhất?
A. 31 tháng 5.
B. 28 tháng 5.
C. 29 tháng 5.
D. 30 tháng 5.
- Câu 18 : Cho dãy số \((u_n)\) có số hạng tổng quát \({u_n} = \frac{{n - 1}}{{n + 2}},(n \in {N^*})\). Số hạng thứ 100 của dãy số là
A. \({u_{100}} = \frac{{33}}{{34}}.\)
B. \({u_{100}} = \frac{{37}}{{34}}.\)
C. \({u_{100}} = \frac{{39}}{{34}}.\\)
D. \({u_{100}} = \frac{{35}}{{34}}.\\)
- Câu 19 : Một bàn dài có hai dãy ghế ngồi đối diện nhau, mỗi dãy có 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 học sinh trường A và 6 học sinh trường B ngồi vào hai dãy ghế trên. Mỗi ghế xếp đúng một học sinh. Hỏi có bao nhiêu cách xếp sao cho bất cứ hai học sinh nào ngồi đối diện nhau thì khác trường với nhau?
A. 1036800.
B. 12441600.
C. 33177600.
D. 479001600.
- Câu 20 : Trong mặt phẳng với hệ trục toạ độ Oxy cho đường thẳng \(d:y = x - 2\) và đường tròn \(\left( C \right):\,\;{x^2} + {y^2} = 4\); gọi A, B là giao điểm của d và (C). Phép tịnh tiến theo véctơ \(\overrightarrow v \left( {1;3} \right)\) biến hai điểm A, B lần lượt thành A', B' Khi đó độ dài của đoạn A'B' là
A. \(2\)
B. \(\sqrt 2 \)
C. \(2\sqrt 3 \)
D. \(2\sqrt 2 \)
- Câu 21 : Trong mặt phẳng tọa độ Oxy cho hai điểm \(A(1; - 3),\;B( - 2;5)\). Khi đó tọa độ của vectơ \(\overrightarrow {AB} \) là
A. \(\overrightarrow {AB} = ( - 1;2).\)
B. \(\overrightarrow {AB} = ( - 3;8).\)
C. \(\overrightarrow {AB} = (3; - 8).\)
D. \(\overrightarrow {AB} = (8; - 3).\)
- Câu 22 : Cho hình hộp ABCD. EFGH có \(\overrightarrow {AB} = \overrightarrow a ,\,\overrightarrow {AD} = \overrightarrow b ,\,\overrightarrow {AE} = \overrightarrow c .\) Gọi I là điểm thuộc đoạn BG sao cho \(4BI = BG.\) Biểu thị \(\overrightarrow {AI} \) qua \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) ta được
A. \(\overrightarrow {AI} = \overrightarrow a + \frac{7}{4}\overrightarrow b + \frac{7}{4}\overrightarrow c .\)
B. \(\overrightarrow {AI} = \overrightarrow a + \frac{1}{3}\overrightarrow b + \frac{1}{3}\overrightarrow c .\)
C. \(\overrightarrow {AI} = \overrightarrow a + \frac{1}{2}\overrightarrow b + \frac{1}{2}\overrightarrow c .\)
D. \(\overrightarrow {AI} = \overrightarrow a + \frac{1}{4}\overrightarrow b + \frac{1}{4}\overrightarrow c .\)
- Câu 23 : Nghiệm dương nhỏ nhất của phương trình \(\tan \left( {x - \frac{\pi }{4}} \right) = 1\) là
A. \(\frac{\pi }{2}.\)
B. \(3\frac{\pi }{4}.\)
C. \(\frac{\pi }{4}.\)
D. \(\pi\)
- Câu 24 : Trong mặt phẳng tọa độ Oxy cho đường thẳng \(\Delta \) có phương trình là \(x + 2y - 3 = 0\). Vectơ nào sau đây không phải là vevtơ chỉ phương của đường thẳng \(\Delta \) ?
A. \(\overrightarrow {{u_1}} = ( - 2;1).\)
B. \(\overrightarrow {{u_4}} = (4; - 2).\)
C. \(\overrightarrow {{u_2}} = ( - 2; - 1).\)
D. \(\overrightarrow {{u_3}} = (2; - 1).\)
- Câu 25 : Cho cấp số nhân \(({u_n})\) biết \[{u_1} = - 1\), công bội \(q=-2\). Số hạng tổng quát của cấp số nhân đó là
A. \({u_n} = {( - 1)^{n - 1}}{.2^{n - 1}}.\)
B. \({u_n} = {( - 1)^{n - 1}}{.2^{n - 1}}.\)
C. \({u_n} = {( - 1)^n}{.2^n}.\)
D. \({u_n} = {( - 1)^{n - 1}}{.2^n}.\)
- Câu 26 : Cho biểu thức \(P(x) = {(2x + 1)^n}.{(x + 2)^n}\) có khai triển thành đa thức dạng \(P(x) = {a_{2n}}.{x^{2n}} + {a_{2n - 1}}.{x^{2n - 1}} + ... + {a_1}.x + {a_0}.\) Với giá trị nào của n thì \({a_{2n - 1}} = 160\)?
A. 5
B. 6
C. 3
D. 4
- Câu 27 : Từ hai vị trí A, B của một tòa nhà, người ta quan sát đỉnh C của một ngọn núi. Biết rằng A là điểm nằm phía chân của tòa nhà tiếp xúc với mặt đất, B là điểm nằm trên nóc của tòa nhà, phương AB vuông góc với mặt đất, khoảng cách AB là 70(m), phương nhìn AC tạo với phương nằm ngang góc \(30^0\), phương nhìn BC tạo với phương nằm ngang góc \({15^0}{30'}\). Hỏi ngọn núi đó cao bao nhiêu mét so với mặt đất (làm tròn đến hàng phần trăm)?
A. 134,7(m).
B. 77,77(m).
C. 126,21(m).
D. 143,7(m).
- Câu 28 : Một hộp đựng 4 quả cầu xanh, 3 quả cầu đỏ, 5 quả cầu vàng. Biết rằng các quả cầu đều giống nhau về kích thước và chất liệu. Chọn đồng thời cùng một lúc 4 quả cầu. Số cách chọn ra 4 quả cầu có đủ cả 3 màu là
A. 60
B. 540
C. 270
D. 720
- Câu 29 : Chu kì T của hàm số \(y=sin 2x\) là
A. \(T = \pi .\)
B. \(T = 3\pi .\)
C. \(T = 2\pi .\)
D. \(T = 0.\)
- Câu 30 : Trong mặt phẳng Oxy, cho hình chữ nhật OMNP với M(0;10), N(100;10), P(100;0). Gọi S là tập hợp các điểm \(A\left( {x;y} \right)\) với \(x,y \in Z\) nằm bên trong và kể cả trên cạnh của hình chữ nhật OMNP. Lấy ngẫu nhiên một điểm \(A\left( {x;y} \right)\) thuộc S. Tính xác suất để \(x + y = 90\)?
A. \(\frac{1}{{100}}.\)
B. \(\frac{1}{{99}}.\)
C. \(\frac{1}{{101}}.\)
D. \(\frac{1}{{102}}.\)
- Câu 31 : Cho hình chóp S.ABCD có đáy là hình bình hành, điểm O là giao của AC và BD. Gọi d là giao tuyến của (SAD) và (SBC). Khẳng định nào sau đây sai ?
A. \(d//\left( {ABCD} \right).\)
B. \(\left( {SAC} \right) \cap \left( {SDB} \right) = SO.\)
C. \(AB//\left( {SDC} \right).\)
D. \(d//AB.\)
- Câu 32 : Cho tứ diện ABCD, gọi M, N lần lượt là trung điểm các cạnh AC, BD ; G là trọng tâm tam giác ABD ; I là trung điểm đoạn GM. Điểm F thuộc cạnh BC sao cho \(2FB = 3FC,\) điểm J thuộc cạnh DF sao cho \(7DJ = 5DF.\) Dựng hình bình hành BMKC. Trong các khẳng định sau khẳng định nào sai?
A. \(GM//DK.\)
B. \(3DK = 10GM.\)
C. A, I, J thẳng hàng
D. \(7\overrightarrow {AJ} = 12\overrightarrow {AI} .\)
- Câu 33 : Có bao nhiêu số tự nhiên gồm 4 chữ số được lập từ các chữ số 3, 5, 7, 8?
A. 652
B. 256
C. 526
D. 24
- Câu 34 : Cho hình hộp \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có M, N là các điểm lần lượt thuộc các cạnh AD và CC1 sao cho \(\frac{{AM}}{{DM}} = \frac{{CN}}{{{C_1}N}} = \frac{1}{2}.\) Mặt phẳng \(\left( \alpha \right)\) qua M, N và song song với AB1. Thiết diện tạo bởi mặt phẳng \(\left( \alpha \right)\) với hình hộp là
A. Lục giác
B. Tứ giác
C. Ngũ giác
D. Tam giác
- Câu 35 : Cho phương trình \({m^2} + m\left( {{x^2} - 3{\rm{x}} - 4 - \sqrt {x + 7} } \right) - \left( {{x^2} - 3{\rm{x}} - 4} \right)\sqrt {x + 7} = 0\), (m là tham số). Có tất cả bao nhiêu giá trị \(m \in Z\) để phương trình có số nghiệm thực nhiều nhất?
A. 5
B. 7
C. 6
D. 8
- Câu 36 : Cho hình chóp S.ABCD có đáy ABCD là hình thang; \(AB//CD,\,AB = 2CD.\) M là trung điểm cạnh AD; mặt phẳng \(\left( \alpha \right)\) qua M và song song với (SAB) cắt hình chóp S.ABCD theo thiết diện là một hình (H). Biết \({S_{\left( H \right)}} = x{S_{\Delta SAB}}.\) Giá trị của x là
A. \(\frac{1}{2}.\)
B. \(\frac{{27}}{{64}}.\)
C. \(\frac{1}{4}.\)
D. \(\frac{9}{{16}}.\)
- Câu 37 : Hàm số nào sau đây có tập xác định là R?
A. \(y = \frac{{\sqrt x }}{{\sqrt {{x^2} + 1} }}.\)
B. \(y = \sqrt {x + 2} .\)
C. \(y = \frac{1}{{x - 3}}.\)
D. \(y = {x^2} - \sqrt {{x^2} + 1} - 5.\)
- Câu 38 : Tập nghiệm của bất phương trình \(\left| {x - 3} \right| > x + 2\) là
A. \(\phi .\)
B. \(\left( { - \infty ;\frac{1}{2}} \right).\)
C. \(\left( {0;\frac{1}{2}} \right).\)
D. \(\left( {\frac{1}{2}; + \infty } \right).\)
- Câu 39 : Tính \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{x - 2}}{{\left| {{x^2} - 5x + 6} \right|}}\)?
A. - 1
B. \( - \frac{1}{2}.\)
C. \( \frac{1}{2}.\)
D. 1
- Câu 40 : Tam thức bậc hai nào sau đây luôn dương với mọi \(x \in R\)?
A. \({x^2} - 2{\rm{x}} + 1.\)
B. \({x^2} - 8{\rm{x}} + 192.\)
C. \({x^2} - 3{\rm{x}} + 2.\)
D. \( - 5{x^2} + 2{\rm{x}} - 229.\)
- Câu 41 : Trong mặt phẳng tọa độ Oxy cho hai điểm \(A(2;3),\;B( - 1;4)\). Tìm tọa độ điểm M thuộc trục Oy sao cho ba điểm A, B, M thẳng hàng?
A. \(M = (0;\frac{{11}}{3}).\)
B. \(M = (0;\frac{9}{2}).\)
C. \(M = (0;9).\)
D. \(M = (11;0).\)
- Câu 42 : Tất cả các giá trị của tham số m để phương trình \({\left( {{x^2} + 2{\rm{x}} + 4} \right)^2} - 2m\left( {{x^2} + 2{\rm{x}} + 4} \right) + 4m - 1 = 0\) có đúng 2 nghiệm là \(m \in \left( {a; + \infty } \right) \cup \left\{ b \right\};\;a,b \in R\). Tổng của \(a+b\) là
A. \(6 - 2\sqrt 3 \)
B. 7
C. \(6 + \sqrt 3 \)
D. 4
- Câu 43 : Điều kiện xác định của phương trình \(\sqrt {x + 1} + \sqrt {5 - 4{\rm{x}}} = x\) là
A. \(\left( {0;\frac{5}{4}} \right).\)
B. \(\left[ {0;\frac{5}{4}} \right].\)
C. \(\left[ { - 1;\frac{5}{4}} \right].\)
D. \(\left( { - 1;\frac{5}{4}} \right).\)
- Câu 44 : Có bao nhiêu giá trị của tham số m để phương trình \(\left( {{m^3} - m} \right)x = {m^2} - m\) có vô số nghiệm?
A. 2
B. 1
C. 3
D. Không tồn tại m.
- Câu 45 : Cho hệ phương trình \(\left\{ \begin{array}{l}
mx + y = 3m\\
x + my = 2m + 1
\end{array} \right.\) (m là tham số). Tất cả các giá trị của tham số m để hệ phương trình có nghiệm duy nhất làA. \(m \ne \pm 1.\)
B. \(m \ne 1.\)
C. \(m \ne -1.\)
D. \(m \in R - \left\{ { \pm 1} \right\}.\)
- Câu 46 : Nhà bạn An cần khoan một cái giếng nước. Biết rằng giá tiền của mét khoan đầu tiên là 200.000đ và kể từ mét khoan thứ hai, giá tiền của mỗi mét sau tăng thêm 7% so với giá tiền của mét khoan ngay trước nó. Hỏi nếu nhà bạn An khoan cái giếng sâu 30m thì hết bao nhiêu tiền (làm tròn đến hàng nghìn)?
A. 18895000đ.
B. 18892000đ.
C. 18892200đ.
D. 18893000đ.
- Câu 47 : Số nghiệm của phương trình \(2{\sin ^2}x - 1 = 0\) trên đoạn \(\left[ {0;3\pi } \right]\) là
A. 8
B. 4
C. 2
D. 6
- - Trắc nghiệm Hình học 11 Bài 5 Khoảng cách
- - Trắc nghiệm Toán 11 Bài 1 Hàm số lượng giác
- - Trắc nghiệm Toán 11 Bài 2 Phương trình lượng giác cơ bản
- - Trắc nghiệm Toán 11 Bài 3 Một số phương trình lượng giác thường gặp
- - Trắc nghiệm Toán 11 Chương 1 Hàm số lượng giác và Phương trình lượng giác
- - Trắc nghiệm Hình học 11 Bài 2 Phép tịnh tiến
- - Trắc nghiệm Hình học 11 Bài 3 Phép đối xứng trục
- - Trắc nghiệm Hình học 11 Bài 4 Phép đối xứng tâm
- - Trắc nghiệm Hình học 11 Bài 5 Phép quay
- - Trắc nghiệm Hình học 11 Bài 6 Khái niệm về phép dời hình và hai hình bằng nhau