Đề ôn tập Chương 3 Hình học lớp 11 năm 2021 Trường...
- Câu 1 : Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và đường cao SH bằng cạnh đáy. Tính số đo góc hợp bởi cạnh bên và mặt đáy.
A. 30o
B. 45o
C. 60o
D. 75o
- Câu 2 : Cho hình lập phương ABCD.A'B'C'D'. Xét mặt phẳng (A'BD). Trong các mệnh đề sau mệnh đề nào đúng?
A. Góc giữa mặt phẳng (A'BD) và các mặt phẳng chứa các cạnh của hình lập phương bằng \(\alpha\) mà \(\tan \alpha = \frac{1}{{\sqrt 2 }}\).
B. Góc giữa mặt phẳng (A'BD) và các mặt phẳng chứa các cạnh của hình lập phương bằng \(\alpha\) mà \(\sin \alpha = \frac{1}{{\sqrt 3 }}\).
C. Góc giữa mặt phẳng (A'BD) và các mặt phẳng chứa các cạnh của hình lập phương phụ thuộc vào kích thước của hình lập phương.
D. Góc giữa mặt phẳng (A'BD) và các mặt phẳng chứa các cạnh của hình lập phương bằng nhau.
- Câu 3 : Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AA' = a, AD = 2a. Gọi \(\alpha\) là góc giữa đường chéo A'C và đáy ABCD. Tính \(\alpha\).
A. \(\alpha \approx 20^\circ 45'\)
B. \(\alpha \approx 24^\circ 5'\)
C. \(\alpha \approx 30^\circ 18'\)
D. \(\alpha \approx 25^\circ 48'\)
- Câu 4 : Cho hình chóp O.ABC có đường cao \(OH = \frac{{2a}}{{\sqrt 3 }}\). Gọi M và N lần lượt là trung điểm của OA và OB. Khoảng cách giữa đường thẳng MN và (ABC) bằng:
A. \(\frac{a}{2}\)
B. \(\frac{{a\sqrt 2 }}{2}\)
C. \(\frac{a}{3}\)
D. \(\frac{{a\sqrt 3 }}{3}\)
- Câu 5 : Cho hình thang vuông ABCD vuông ở A và D, AD = 2a. Trên đường thẳng vuông góc tại D với (ABCD) lấy điểm S với \(SD = a\sqrt 2 \). Tính khỏang cách giữa đường thẳng DC và (SAB).
A. \(\frac{{2a}}{{\sqrt 3 }}\)
B. \(\frac{a}{{\sqrt 2 }}\)
C. \(a\sqrt 2 \)
D. \(\frac{{a\sqrt 3 }}{3}\)
- Câu 6 : Cho hình chóp S.ABCD có \(SA \bot \left( {ABCD} \right)\), đáy ABCD là hình thang vuông cạnh a. Gọi I và J lần lượt là trung điểm của AB và CD. Tính khoảng cách giữa đường thẳng IJ và (SAD).
A. \(\frac{{a\sqrt 2 }}{2}\)
B. \(\frac{{a\sqrt 3 }}{3}\)
C. \(\frac{a}{2}\)
D. \(\frac{a}{3}\)
- Câu 7 : Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc \(\widehat {ABC} = {60^0}\). Các cạnh SA, SB, SC đều bằng \(a\frac{{\sqrt 3 }}{2}\). Gọi \(\varphi \) là góc của hai mặt phẳng (SAC) và (ABCD). Giá trị \(\tan \varphi \) bằng bao nhiêu?
A. \(2\sqrt 5 \)
B. \(3\sqrt 5 \)
C. \(5\sqrt 3 \)
D. \(\sqrt 3 \)
- Câu 8 : Cho hình chóp tứ giác đều S.ABCD có SA = SB. Góc giữa (SAB) và (SAD) bằng \(\alpha\). Chọn khẳng định đúng trong các khẳng định sau?
A. \(\cos \alpha = - \frac{1}{3}\)
B. \(\cos \alpha = \frac{2}{5}\)
C. \(\alpha = {\rm{ }}{60^0}\)
D. \(\cos \alpha = \frac{2}{3}\)
- Câu 9 : Tính cosin của góc giữa hai mặt của một tứ diện đều.
A. \(\frac{1}{3}.\)
B. \(\frac{1}{2}.\)
C. \(\frac{{\sqrt 2 }}{3}.\)
D. \(\frac{{\sqrt 3 }}{2}.\)
- Câu 10 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông có tâm O và \(SA \bot \left( {ABCD} \right)\). Khẳng định nào sau đây sai ?
A. Góc giữa hai mặt phẳng (SBC) và (ABCD) là góc \(\widehat {ABS}\).
B. \(\left( {SAC} \right) \bot \left( {SBD} \right)\)
C. Góc giữa hai mặt phẳng (SBD) và (SBCD) là góc \(\widehat {SOA}\).
D. Góc giữa hai mặt phẳng (SAD) và (ABCD) là góc \(\widehat {SDA}\).
- Câu 11 : Cho hình lập phương \(ABCD.{A_1}{B_1}{C_1}{D_1}\). Gọi \(\alpha\) là góc giữa hai mặt phẳng \(\left( {{A_1}{D_1}CB} \right)\) và (ABCD). Chọn khẳng định đúng trong các khẳng định sau?
A. \(\alpha = {45^0}\)
B. \(\alpha = {30^0}\)
C. \(\alpha = {60^0}\)
D. \(\alpha = {90^0}\)
- Câu 12 : Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Gọi I là trung điểm của cạnh AB. Hình chiếu vuông góc của đỉnh S lên mặt phẳng đáy là trung điểm H của CI, góc giữa đường thẳng SA và mặt đáy bằng 60o. Khoảng cách từ điểm H đến mặt phẳng (SBC) là
A. \(\frac{{a\sqrt {21} }}{{4\sqrt {29} }}\)
B. \(\frac{{a\sqrt {21} }}{{\sqrt {29} }}\)
C. \(\frac{{4a\sqrt {21} }}{{\sqrt {29} }}\)
D. \(\frac{{a\sqrt {21} }}{{2\sqrt {29} }}\)
- Câu 13 : Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 60o. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC Khoảng cách từ điểm C đến mặt phẳng (SMN) tính theo a bằng
A. \(\frac{a}{7}\)
B. \(\frac{7a}{3}\)
C. \(\frac{3a}{7}\)
D. \(\frac{a}{3}\)
- Câu 14 : Cho hình chóp S.ABC có đáy là tam giác ABC cân tại \(A,{\rm{ }}AB = AC = a,\widehat {BAC} = {120^ \circ }\). Hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABC) trùng với trọng tâm G của tam giác ABC. Cạnh bên SC tạo với mặt phẳng đáy một góc \(\alpha\) sao cho \(\tan \alpha = \frac{3}{{\sqrt 7 }}\). Khoảng cách từ điểm C đến mặt phẳng (SAB) tính theo a bằng
A. \(\frac{{a\sqrt {13} }}{{13}}\)
B. \(\frac{{3a\sqrt {13} }}{{13}}\)
C. \(\frac{{5a\sqrt {13} }}{{13}}\)
D. \(\frac{{3a}}{{13}}\)
- Câu 15 : Cho hình chóp S.ABCD có đáy là hình vuông cạnh a tâm O hình chiếu vuông góc của S trên (ABCD) là trung điểm của AO, góc giữa (SCD) và (ABCD) là 60o. Khoảng cách từ trọng tâm của tam giác SAB đến mặt phẳng (SCD) tính theo a bằng
A. \(\frac{{2a\sqrt 3 }}{3}\)
B. \(\frac{{a\sqrt 2 }}{3}\)
C. \(\frac{{2a\sqrt 2 }}{3}\)
D. \(\frac{{a\sqrt 3 }}{3}\)
- Câu 16 : Cho hình lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi, AC = 2a. Các cạnh bên vuông góc với đáy và AA' = a. Khẳng định nào sau đây sai ?
A. Các mặt bên của hình lăng trụ là các hình chữ nhật.
B. Góc giữa hai mặt phẳng (AA'C'C) và (BB'D'D) có số đo bằng 60o.
C. Hai mặt bên (AA'C) và (BB'C) vuông góc với hai đáy.
D. Hai hai mặt bên (AA'B'B) và (AA'D'D) bằng nhau.
- Câu 17 : Trong không gian cho tam giác đều SAB và hình vuông ABCD cạnh a nằm trên hai mặt phẳng vuông góc. Gọi H, K lần lượt là trung điểm của AB, CD. Ta có tan của góc tạo bởi hai mặt phẳng (SAB) và (SCD) bằng :
A. \(\frac{{\sqrt 2 }}{3}\)
B. \(\frac{{2\sqrt 3 }}{3}\)
C. \(\frac{{\sqrt 3 }}{3}\)
D. \(\frac{{\sqrt 3 }}{2}\)
- Câu 18 : Cho hình chóp tam giác đều S.ABC với SA = 2AB. Góc giữa (SAB) và (ABC) bằng a. Chọn khẳng định đúng trong các khẳng định sau?
A. \(\alpha = {\rm{6}}{0^0}\)
B. \(\cos \alpha = \frac{1}{{3\sqrt 5 }}\)
C. \(\cos \alpha = \frac{1}{{4\sqrt 5 }}\)
D. \(\cos \alpha = \frac{1}{{2\sqrt 5 }}\)
- Câu 19 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O. Biết \(SO \bot \left( {ABCD} \right)\), \(SO = a\sqrt 3 \) và đường tròn ngoại tiếp ABCD có bán kính bằng a. Gọi \(\alpha\) là góc hợp bởi mặt bên (SCD) với đáy. Khi đó \(\tan \alpha = ?\)
A. \(\frac{{\sqrt 3 }}{2}\)
B. \(\frac{{\sqrt 3 }}{{\sqrt 2 }}\)
C. \(\frac{{\sqrt 6 }}{6}\)
D. \(\sqrt 6 \)
- Câu 20 : Cho hình chóp S.ABCD có đáy là hình chữ nhật, \(AB = a,{\rm{ }}AC = 2a,{\rm{ }}SA\) vuông góc với mặt phẳng (ABCD). SC tạo với mặt phẳng (SAB) một góc 30o. Gọi M là một điểm trên cạnh AB sao cho \(BM = 3MA.\) Khoảng cách từ điểm A đến mặt phẳng (SCM) là
A. \(\frac{{\sqrt {34} a}}{{51}}\)
B. \(\frac{{2\sqrt {34} a}}{{51}}\)
C. \(\frac{{3\sqrt {34} a}}{{51}}\)
D. \(\frac{{4\sqrt {34} a}}{{51}}\)
- Câu 21 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I với \(AB = 2a\sqrt 3 ;BC = 2a\). Biết chân đường cao H hạ từ đỉnh S xuống đáy ABCD trùng với trung điểm đoạn DI và SB hợp với mặt phẳng đáy (ABCD) một góc 60o. Khoảng cách từ D đến (SBC) tính theo a bằng
A. \(\frac{{a\sqrt {15} }}{5}\)
B. \(\frac{{2a\sqrt {15} }}{5}\)
C. \(\frac{{4a\sqrt {15} }}{5}\)
D. \(\frac{{3a\sqrt {15} }}{5}\)
- Câu 22 : Cho tứ diện ABCD . Gọi P, Q là trung điểm của AB và CD . Chọn khẳng định đúng
A. \(\overrightarrow{P Q}=\frac{1}{4}(\overrightarrow{B C}+\overrightarrow{A D})\)
B. \(\overrightarrow{P Q}=\frac{1}{2}(\overrightarrow{B C}+\overrightarrow{A D})\)
C. \(\overrightarrow{P Q}=\frac{1}{2}(\overrightarrow{B C}-\overrightarrow{A D})\)
D. \(\overrightarrow{P Q}=\overrightarrow{B C}+\overrightarrow{A D}\)
- Câu 23 : Cho hình hộp \(A B C D \cdot A_{1} B_{1} C_{1} D_{1}\) . Chọn đẳng thức sai?
A. \(\overrightarrow{B C}+\overrightarrow{B A}=\overrightarrow{B_{1} C_{1}}+\overrightarrow{B_{1} A_{1}}\)
B. \(\overrightarrow{A D}+\overrightarrow{D_{1} C_{1}}+\overrightarrow{D_{1} A_{1}}=\overrightarrow{D C}\)
C. \(\overrightarrow{B C}+\overrightarrow{B A}+\overrightarrow{B B_{1}}=\overline{B D_{1}}\)
D. \(\overrightarrow{B A}+\overrightarrow{D D_{1}}+\overrightarrow{B D_{1}}=\overrightarrow{B C}\)
- Câu 24 : Gọi M, N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD . Gọi I là trung điểm đoạn MN và P là 1 điểm bất kỳ trong không gian. Tìm giá trị của k thích hợp điền vào đẳng thức vectơ \(\overrightarrow{P I}=k(\overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}+\overrightarrow{P D})\)
A. k = 2
B. k = 4
C. \(k=\frac{1}{2}\)
D. \(k=\frac{1}{4}\)
- Câu 25 : Cho hai điểm phân biệt A, B và một điểm O bất kỳ không thuộc đường thẳng AB . Mệnh đề nào sau đây là đúng?
A. Điểm M thuộc đường thẳng AB khi và chỉ khi \(\begin{aligned} \overrightarrow{O M} &=\overrightarrow{O A}+\overrightarrow{O B} \end{aligned}\)
B. Điểm M thuộc đường thẳng AB khi và chỉ khi \(\overrightarrow{O M} =\overrightarrow{O B}=k \overrightarrow{B A} \)
C. Điểm M thuộc đường thẳng AB khi và chỉ khi \(\overrightarrow{O M} =k\overrightarrow{O A}+(1-k) \overrightarrow{O B}\)
D. Điểm M thuộc đường thẳng AB khi và chỉ khi \(\overrightarrow{O M} =\overrightarrow{O B}=k(\overrightarrow{O B}-\overrightarrow{O A})\)
- Câu 26 : Trong các kết quả sau đây, kết quả nào đúng? Cho hình lập phương ABCD.EFGH có cạnh a . Ta có AB \(\overrightarrow {A B} \cdot \overrightarrow{E G}\) bằng:
A. \(a^{2}\)
B. \(a \sqrt{2}\)
C. \(a \sqrt{3}\)
D. \(\frac{a \sqrt{2}}{2}\)
- Câu 27 : Cho lăng trụ tam giác \(A B C \cdot A^{\prime} B^{\prime} C^{\prime} \text { có } \overrightarrow{A A^{\prime}}=\vec{a}, \overrightarrow{A B}=\vec{b}, \overrightarrow{A C}=\vec{c}\) Hãy phân tích (biểu thị) vectơ\(\overrightarrow {B^{\prime} C}\)qua các vectơ \(\vec{a}, \vec{b}, \vec{c}\)
A. \(\overrightarrow{B^{\prime} C}=\vec{a}+\vec{b}-\vec{c}\)
B. \(\overrightarrow{B^{\prime} C}=-\vec{a}+\vec{b}+\vec{c}\)
C. \(\overrightarrow{B^{\prime} C}=\vec{a}+\vec{b}+\vec{c}\)
D. \(\overrightarrow{B^{\prime} C}=-\vec{a}-\vec{b}+\vec{c}\)
- Câu 28 : Cho tứ diện ABCD . Gọi M và N lần lượt là trung điểm của AB và CD . Tìm giá trị của k thích hợp điền vào đẳng thức vectơ \(\overrightarrow{M N}=k(\overrightarrow{A C}+\overrightarrow{B D})\)
A. \(\begin{aligned} &k=\frac{1}{2} \end{aligned}\)
B. \( k=\frac{1}{3}\)
C. k=3
D. k=2
- Câu 29 : Cho hình tứ diện ABCD có trọng tâm G . Mệnh đề nào sau đây là sai?
A. \(\overrightarrow{G A}+G\overrightarrow{B}+\overrightarrow{G C}+\overrightarrow{G D}=\overrightarrow{0}\)
B. \(\overrightarrow{O G}=\frac{1}{4}(\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D})\)
C. \(\overrightarrow{A G}=\frac{2}{3}(\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D})\)
D. \(\overrightarrow{A G}=\frac{1}{4}\overrightarrow{A B}+\overrightarrow{A C}+\overline{A D})\)
- Câu 30 : Cho ba vectơ\(\vec{a}, \vec{b}, \vec{c}\) không đồng phẳng. Trong các khẳng định sau, khẳng định nào sai?
A. Các vec tơ \(\begin{array}{l} \vec{x}=\vec{a}+\vec{b}+2 \vec{c} ; \vec{y}=2 \vec{a}-3 \vec{b}-6 \vec{c} ; \vec{z}=-\vec{a}+3 \vec{b}+6 \vec{c} \end{array}\) đồng phẳng
B. Các vec tơ đồng phẳng \(\vec{x}=\vec{a}-2 \vec{b}+4 \vec{c} ; \vec{y}=3 \vec{a}-3 \vec{b}+2 \vec{c} ; \vec{z}=2 \vec{a}-3 \vec{b}-3 \vec{c} \)
C. Các vec tơ \(\vec{x}=\vec{a}+\vec{b}+\vec{c} ; \vec{y}=2 \vec{a}-3 \vec{b}+\vec{c} ; \vec{z}=-\vec{a}+3 \vec{b}+3 \vec{c} \) đồng phẳng
D. Các vec tơ \(\vec{x}=\vec{a}+\vec{b}-\vec{c} ; \vec{y}=2 \vec{a}-\vec{b}+3 \vec{c} ; \vec{z}=-\vec{a}-\vec{b}+2 \vec{c}\) đồng phẳng
- Câu 31 : Cho hình hộp \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\) với tâm O . Hãy chỉ ra đẳng thức sai trong các đẳng thức sau đây:
A. \(\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C C^{\prime}}=\overrightarrow{A D^{\prime}}+\overrightarrow{D^{\prime} O}+\overrightarrow{O C^{\prime}}\)
B. \(\overrightarrow{A B}+\overrightarrow{A A^{\prime}}=\overrightarrow{A D}+\overrightarrow{D D^{\prime}}\)
C. \(\overrightarrow{A B}+\overrightarrow{B C^{\prime}}+\overrightarrow{C D}+\overrightarrow{D^{\prime} A}=\overrightarrow{0}\)
D. \(\overrightarrow{A C^{\prime}}=\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A^{\prime}}\)
- - Trắc nghiệm Hình học 11 Bài 5 Khoảng cách
- - Trắc nghiệm Toán 11 Bài 1 Hàm số lượng giác
- - Trắc nghiệm Toán 11 Bài 2 Phương trình lượng giác cơ bản
- - Trắc nghiệm Toán 11 Bài 3 Một số phương trình lượng giác thường gặp
- - Trắc nghiệm Toán 11 Chương 1 Hàm số lượng giác và Phương trình lượng giác
- - Trắc nghiệm Hình học 11 Bài 2 Phép tịnh tiến
- - Trắc nghiệm Hình học 11 Bài 3 Phép đối xứng trục
- - Trắc nghiệm Hình học 11 Bài 4 Phép đối xứng tâm
- - Trắc nghiệm Hình học 11 Bài 5 Phép quay
- - Trắc nghiệm Hình học 11 Bài 6 Khái niệm về phép dời hình và hai hình bằng nhau