Chương 3 - Bài 4: Góc tạo bởi tia tiếp tuyến và dâ...
- Câu 1 : Cho điểm A nằm ngoài đường tròn (O). Qua A kẻ hai tiếp tuyến AB và AC với (O) (B, C là tiếp điểm). Kẻ cát tuyến AMN với (O) (M nằm giữa A và N)
- Câu 2 : Cho tam giác ABC nội tiếp đường tròn (O). Tiếp tuyến tại A cắt BC ở I
- Câu 3 : Cho tam giác ABC nội tiếp (O). Tiếp tuyến tại A của (O) cắt BC tại P
- Câu 4 : Cho hình bình hành ABCD, . Đường tròn ngoại tiếp tam giác BCD cắt AC ở E. Chứng minh BD là tiếp tuyến của đường tròn ngoại tiếp tam giác AEB
- Câu 5 : Cho các đường tròn (O; R) và (O’; R’) tiếp xúc trong với nhau tại A (R > R’). Vẽ đường kính AB của (O), AB cắt (O’) tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O’), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
- Câu 6 : Cho đường tròn (O; R) với A là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyế thứ hai MB với đường tròn (O). Gọi I là trung điểm MA, K là giao điểm của BI với (O)
- Câu 7 : Cho hai đường tròn (O) và (I) cắt nhau ở C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K, H theo thứ tự là giao điểm của NC, MC với EF. Gọi G là giao điểm của EM, FN. Chứng minh:
- Câu 8 : Cho tam giác ABC nội tiếp đường tròn (O) và AB < AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau
- Câu 9 : Cho tam giác ABC nội tiếp (O) và At là tia tiếp tuyến với (O). Đường thẳng song song với At cắt AB và v4C lần lượt tại M và N. Chứng minh AB.AM = AC.AN
- Câu 10 : Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Qua A vẽ tiếp tuyêh Ax với (O) nó cắt (O') tại E. Qua A vẽ tiếp tuyến Ay với (O') nó cắt (O) tại D. Chứng minh AB2 = BD.BE
- Câu 11 : Cho hình thang ABCD (AB//CD) có BD2 = AB.CD. Chứng minh đường tròn ngoại tiếp tam giác ABD tiếp xúc với BC
- Câu 12 : Cho hình vuông ABCD có cạnh dài 2cm. Tính bán kính của đường tròn đi qua A và B biết rằng đoạn tiếp tuyến kẻ từ D đến đường tròn đó bằng 4cm
- Câu 13 : Cho nửa đường tròn (O) đường kính AB và một điểm C trên nửa đường tròn. Gọi D là một điểm trên đường kính AB; qua D kẻ đường vuông góc với AB cắt BC tại F, cắt AC tại E. Tiếp tuyến của nửa đường tròn tại C cắt EF tại I. Chứng minh:
- Câu 14 : Cho tam giác ABC nội tiếp đường tròn tâm O. Phân giác góc BAC cắt (O) ở M. Tiếp tuyến kẻ từ M với đường tròn cắt các tia AB và AC lần lượt ở D và E. Chứng minh BC và DE song song
- Câu 15 : Cho tam giác ABC. Vẽ đường tròn (O) đi qua A và tiếp xúc với BC tại B. Kẻ dây BD song song với AC. Gọi I là giao điểm của CD với đường tròn. Chứng minh:
- Câu 16 : Cho hai đường tròn tâm O và O’ tiếp xúc ngoài tại A. Qua A kẻ một cát tuyến cắt (O) ở B và cắt (O') ở C. Kẻ các đường kính BOD và CO'E của hai đường tròn trên
- Câu 17 : Cho đường tròn (O') tiếp xúc với hai cạnh Ox và Oy của xOy tại A và B. Từ A kẻ tia song song với OB cắt (O') tại C. Đoạn oc cắt (O') tại E. Hai đường thẳng AE và OB cắt nhau tại K. Chứng minh K là trung điểm của OB
Xem thêm
- - Trắc nghiệm Toán 9 Bài 1 Căn bậc hai
- - Trắc nghiệm Toán 9 Bài 2 Căn thức bậc hai và hằng đẳng thức căn bậc hai
- - Trắc nghiệm Toán 9 Bài 3 Liên hệ giữa phép nhân và phép khai phương
- - Trắc nghiệm Toán 9 Bài 4 Liên hệ giữa phép chia và phép khai phương
- - Trắc nghiệm Toán 9 Bài 6 Biến đổi đơn giản biểu thức chứa căn thức bậc hai
- - Trắc nghiệm Toán 9 Bài 8 Rút gọn biểu thức chứa căn bậc hai
- - Trắc nghiệm Toán 9 Bài 9 Căn bậc ba
- - Trắc nghiệm Toán 9 Bài 1 Hàm số y = ax^2 (a ≠ 0)
- - Trắc nghiệm Toán 9 Bài 2 Đồ thị của hàm số y = ax^2 (a ≠ 0)
- - Trắc nghiệm Toán 9 Bài 3 Phương trình bậc hai một ẩn