Đề thi giữa HK2 môn Toán 11 năm 2021 - Trường THPT...
- Câu 1 : Cho hàm số \( f(x) = \frac{{{x^2} + 1}}{{{x^2} + 5x + 6}}\). Hàm số f( x) liên tục trên khoảng nào sau đây?
A. (−∞;3)
B. (2;3)
C. (-3;2)
D. (−3;+∞)
- Câu 2 : Cho hàm số y = f( x) có đồ thị như hình vẽ, chọn kết luận đúng:
A. Hàm số liên tục trên khoảng (0;3)
B. Hàm số liên tục trên khoảng (0;2)
C. Hàm số không liên tục trên khoảng (−∞;0)
D. Hàm số không liên tục trên khoảng (0;4)
- Câu 3 : Hàm số y = f( x ) có đồ thị dưới đây gián đoạn tại điểm có hoành độ bằng bao nhiêu?
A. 0
B. 1
C. 2
D. 3
- Câu 4 : Tìm m để các hàm số \(f(x) = \left\{ \begin{array}{l} \frac{{\sqrt {x + 1} - 1}}{x}{\rm{ \ khi \ }}x > 0\\ 2{x^2} + 3m + 1{\rm{ \ khi \ }}x \le 0 \end{array} \right.\) liên tục trên R.
A. m = 1
B. \(m = -\dfrac16\)
C. m = 2
D. m = 0
- Câu 5 : Tìm giới hạn \(B=\lim\limits _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}-3 x+4}-2 x}{\sqrt{x^{2}+x+1}-x}\)
A. \(+\infty\)
B. \(-\infty\)
C. 2
D. 0
- Câu 6 : Tìm giới hạn \(A=\lim\limits _{x \rightarrow+\infty} \frac{(2 x+1)^{3}(x+2)^{4}}{(3-2 x)^{7}}\)
A. \(-\infty\)
B. \(+\infty\)
C. 1
D. \(-\dfrac{1}{16}\)
- Câu 7 : Tìm giới hạn \(B=\lim \limits_{x \rightarrow+\infty} \frac{x \sqrt{x^{2}+1}-2 x+1}{\sqrt[3]{2 x^{3}-2}+1}\)
A. \(-\infty\)
B. \(+\infty\)
C. 1
D. 0
- Câu 8 : Tìm giới hạn \(A=\lim \limits_{x \rightarrow-\infty} \frac{\sqrt[3]{3 x^{3}+1}-\sqrt{2 x^{2}+x+1}}{\sqrt[4]{4 x^{4}+2}}\)
A. \(-\infty\)
B. \(+\infty\)
C. \(-\frac{\sqrt[3]{3}+\sqrt{2}}{\sqrt{2}}\)
D. 0
- Câu 9 : \(\text { Tính giới hạn } L=\lim \frac{n^{2}-3 n^{3}}{2 n^{3}+5 n-2}\)
A. \(L=-\frac{3}{2}\)
B. \(L=\frac{1}{2}\)
C. L = 0
D. L = 1
- Câu 10 : Cho dãy số \(\left(u_{n}\right) \text { vớii } u_{n}=\frac{4 n^{2}+n+2}{a n^{2}+5}\). Để dãy số đã cho có giới hạn bằng 2 , giá trị của a là:
A. 1
B. 2
C. 3
D. 4
- Câu 11 : \(\text { Tính giới hạn } L=\lim \frac{n^{2}+n+5}{2 n^{2}+1} \text { . }\)
A. \(L=\frac{3}{2} .\)
B. \(L=\frac{1}{2} .\)
C. L = 1
D. L = 0
- Câu 12 : Cho dãy số \(\left(u_{n}\right) \text { với } u_{n}=\frac{2 n+b}{5 n+3}\)trong đó b là tham số thực. Để dãy số \((u_n)\) có giới hạn hữu hạn, giá trị của b là:
A. b = 2
B. b = 5
C. b tùy ý
D. Không tồn tại b
- Câu 13 : Cho hình vuông \({A_1}{B_1}{C_1}{D_1}\) có cạnh bằng 1. Gọi Ak+1, Bk+1, Ck+1, Dk+1 thứ tự là trung điểm các cạnh AkBk, BkCk, CkDk, DkAk (với k = 1, 2, ... ). Chu vi của hình vuông \({A_{2018}}{B_{2018}}{C_{2018}}{D_{2018}}\) bằng
A. \(\frac{{\sqrt 2 }}{{{2^{2018}}}}.\)
B. \(\frac{{\sqrt 2 }}{{{2^{1007}}}}.\)
C. \(\frac{{\sqrt 2 }}{{{2^{2017}}}}.\)
D. \(\frac{{\sqrt 2 }}{{{2^{1006}}}}.\)
- Câu 14 : Cho hình vuông ABCD có cạnh bằng a và có diện tích \({S_1}\). Nối 4 trung điểm A1, B1, C1, D1 theo thứ tự của cạnh AB, BC, CD, DA ta được hình vuông thứ hai có diện tích S2. Tiếp tục làm như thế, ta được hình vuông thứ ba là \({A_2}{B_2}{C_2}{D_2}\) có diện tích S3, …và cứ tiếp tục làm như thế, ta tính được các hình vuông lần lượt có diện tích S4, S5,…, S100 (tham khảo hình bên). Tính tổng \(S = {S_1} + {S_2} + {S_3} + ... + {S_{100}}\).
A. \(S = \frac{{{a^2}\left( {{2^{100}} - 1} \right)}}{{{2^{100}}}}\)
B. \(S = \frac{{{a^2}\left( {{2^{100}} - 1} \right)}}{{{2^{99}}}}\)
C. \(S = \frac{{{a^2}}}{{{2^{100}}}}\)
D. \(S = \frac{{{a^2}\left( {{2^{99}} - 1} \right)}}{{{2^{98}}}}\)
- Câu 15 : Giá trị của tổng \(4 + 44 + 444 + ... + 44...4\) (tổng đó có 2018 số hạng) bằng
A. \(\frac{{40}}{9}\left( {{{10}^{2018}} - 1} \right) + 2018\)
B. \(\frac{4}{9}\left( {\frac{{{{10}^{2019}} - 10}}{9} - 2018} \right)\)
C. \(\frac{4}{9}\left( {\frac{{{{10}^{2019}} - 10}}{9} + 2018} \right)\)
D. \(\frac{4}{9}\left( {{{10}^{2018}} - 1} \right)\)
- Câu 16 : Cho dãy số (un) xác định bởi: \({u_1} = \frac{1}{3}\) và \({u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n}\). Tổng \(S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}}\) bằng
A. \(\frac{{3280}}{{6561}}\)
B. \(\frac{{25942}}{{59049}}\)
C. \(\frac{{29524}}{{59049}}\)
D. \(\frac{1}{{243}}\)
- Câu 17 : Cho hình hộp \(A B C D \cdot A_{1} B_{1} C_{1} D_{1}\) . Trong các khẳng định sau, khẳng định nào sai?
A. \(\overrightarrow{A C_{1}}+\overrightarrow{A_{1} C}=2 \overrightarrow{A C}\)
B. \(\overrightarrow{A C_{1}}+\overrightarrow{C A_{1}}+2 \overline{C_{1} C}=\overrightarrow{0}\)
C. \(\overrightarrow{A C_{1}}+\overrightarrow{A_{1} C}=\overrightarrow{A A_{1}}\)
D. \(\overrightarrow{C A_{1}}+\overrightarrow{A C}=\overrightarrow{C C_{1}}\)
- Câu 18 : Cho hình hộp ABCD.EFGH. Gọi I là tâm hình bình hành ABEF và K là tâm hình bình hành BCGF . Trong các khẳng định sau, khẳng định nào đúng?
A. \(\begin{array}{l} \overrightarrow{B D}, \overrightarrow{A K}, \overrightarrow{G F} \end{array}\) đồng phẳng.
B. \(\begin{array}{l} \overrightarrow{B D}, \overrightarrow{I K}, \overrightarrow{G F} \end{array}\)đồng phẳng.
C. \(\overrightarrow{B D}, \overrightarrow{E K}, \overrightarrow{G F}\) đồng phẳng.
D. \(\overrightarrow{B D}, \overrightarrow{I K}, \overrightarrow{G C}\) đồng phẳng.
- Câu 19 : Cho hình lăng trụ tam giác \(A B C \cdot A_{1} B_{1} C\). Đặt \(\overrightarrow{A A_{1}}=\vec{a}, \overrightarrow{A B}=\vec{b}, \overrightarrow{A C}=\vec{c}, \overrightarrow{B C}=\vec{d}\). Trong các đẳng
thức sau, đẳng thức nào đúng?A. \(\vec{a}+\vec{b}+\vec{c}+\vec{d}=\overrightarrow{0}\)
B. \(\vec{a}+\vec{b}+\vec{c}=\vec{d}\)
C. \(\vec{b}-\vec{c}+\bar{d}=\overrightarrow{0}\)
D. \(\vec{a}=\vec{b}+\vec{c}\)
- Câu 20 : Cho hình lập phương ABCD.EFGH . Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {EG} \)?
A. 90o
B. 60o
C. 45o
D. 120o
- Câu 21 : Cho hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau, mệnh đề nào có thể sai?
A. \(A'C' \bot BD\)
B. \(BB' \bot BD\)
C. \(A'B \bot DC'\)
D. \(BC' \bot A'D\)
- Câu 22 : Trong không gian cho đường thẳng \(\Delta\) và điểm O . Qua O có mấy đường thẳng vuông góc với \(\Delta\) cho trước?
A. 0
B. 1
C. 2
D. Vô số
- Câu 23 : Cho hai đường thẳng phân biệt a,b và mặt phẳng (P), trong đó \(a \perp(P)\). Mệnh đề nào sau đây là sai?
A. Nếu \(b \perp(P) \text { thì } b / / a\)
B. Nếu \(b / /(P) \text { thì } b \perp a\)
C. Nếu \(b / / a \text { thì } b \perp(P)\)
D. Nếu \(b\perp a \text { thì } b / /(P)\)
- Câu 24 : Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc. Đường thẳng AB vuông góc với?
A. (BCD)
B. (ACD)
C. (ABC)
D. (CID) với I là trung điểm của AB.
- - Trắc nghiệm Hình học 11 Bài 5 Khoảng cách
- - Trắc nghiệm Toán 11 Bài 1 Hàm số lượng giác
- - Trắc nghiệm Toán 11 Bài 2 Phương trình lượng giác cơ bản
- - Trắc nghiệm Toán 11 Bài 3 Một số phương trình lượng giác thường gặp
- - Trắc nghiệm Toán 11 Chương 1 Hàm số lượng giác và Phương trình lượng giác
- - Trắc nghiệm Hình học 11 Bài 2 Phép tịnh tiến
- - Trắc nghiệm Hình học 11 Bài 3 Phép đối xứng trục
- - Trắc nghiệm Hình học 11 Bài 4 Phép đối xứng tâm
- - Trắc nghiệm Hình học 11 Bài 5 Phép quay
- - Trắc nghiệm Hình học 11 Bài 6 Khái niệm về phép dời hình và hai hình bằng nhau