Đề thi giữa HK2 môn Toán 11 năm 2021 - Trường THPT...
- Câu 1 : Tam giác ABC có ba góc \(\hat A,\hat B,\hat C\) theo thứ tự đó lập thành cấp số cộng và \(\hat C= 5\hat A\) . Xác định số đo các góc \(\hat A,\hat B,\hat C\)
A. \(\begin{aligned} &\left\{\begin{array}{l} \hat A=10^{\circ} \\ \hat B=120^{\circ} \\ \hat C=50^{\circ} \end{array}\right. \end{aligned}\)
B. \(\left\{\begin{array}{l} \hat A=15^{\circ} \\ \hat B=105^{\circ} \\ \hat C=60^{\circ} \end{array}\right.\)
C. \(\begin{aligned} &\left\{\begin{array}{l} \hat A=5^{0} \\ \hat B=60^{\circ} \\ \hat C=25^{\circ} \end{array}\right. \end{aligned}\)
D. \(\left\{\begin{array}{l} \hat A=20^{\circ} \\ \hat B=60^{\circ} \\ \hat C=100^{\circ} \end{array}\right.\)
- Câu 2 : Cho cấp số cộng \((u_n)\) có công sai d>0; \(\left\{\begin{array}{l} u_{31}+u_{34}=11 \\ u_{31}^{2}+u_{34}^{2}=101 \end{array}\right.\). Hãy tìm số hạng tổng quát của cấp số cộng đó.
A. \(u_{n}=3 n-9\)
B. \(u_{n}=3 n-2\)
C. \(u_{n}=3 n-92\)
D. \(u_{n}=3 n-66\)
- Câu 3 : Cho cấp số cộng \((u_n)\) thỏa mãn \(\left\{\begin{array}{l} u_{7}-u_{3}=8 \\ u_{2} \cdot u_{7}=75 \end{array}\right.\). Tìm \(u_{1}, d\)?
A. \(\left\{\begin{array}{l}d=2 \\ u_{1}=2, u_{1}=-17\end{array}\right.\)
B. \(\left\{\begin{array}{l}d=2 \\ u_{1}=3, u_{1}=-7\end{array}\right.\)
C. \(\left\{\begin{array}{l}d=2 \\ u_{1}=-3, u_{1}=-17\end{array}\right.\)
D. \(\left\{\begin{array}{l}d=2 \\ u_{1}=3, u_{1}=-17\end{array}\right.\)
- Câu 4 : Tìm ba số hạng liên tiếp của một cấp số cộng biết tổng của chúng bằng -9 và tổng các bình phương của chúng bằng 29.
A. 1; 2; 3
B. -4; -3; -2
C. -2; -1; 0
D. -3; -2; -1
- Câu 5 : Cho cấp số nhân \({u_1} = - 1\), \({u_6} = 0,00001\). Khi đó q và số hạng tổng quát là
A. \(q = \frac{1}{{10}},{u_n} = \frac{{ - 1}}{{{{10}^{n - 1}}}}\)
B. \(q = \frac{{ - 1}}{{10}},{u_n} = - {10^{n - 1}}\)
C. \(q = \frac{{ - 1}}{{10}},{u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{{{{10}^{n - 1}}}}\)
D. \(q = \frac{1}{{10}},{u_n} = \frac{1}{{{{10}^{n - 1}}}}\)
- Câu 6 : Cho ba số x, 5, 3y theo thứ tự lập thành cấp số cộng và ba số x, 3, 3y theo thứ tự lập thành cấp số nhân thì |3y - x| bằng?
A. 8
B. 6
C. 9
D. 10
- Câu 7 : Cho ba số x; 5; 2y theo thứ tự lập thành cấp số cộng và ba số x; 4; 2y theo thứ tự lập thành cấp số nhân thì |x - 2y| bằng
A. |x - 2y| = 8
B. |x - 2y| = 9
C. |x - 2y| = 6
D. |x - 2y| = 10
- Câu 8 : Một du khách vào chuồng đua ngựa đặt cược, lần đầu tiên đặt 20000 đồng, mỗi lần sau tiền đặt gấp đôi tiền đặt lần trước. Người đó thua 9 lần liên tiếp và thắng ở lần thứ 10. Hỏi du khách đó thắng hay thua bao nhiêu?
A. Thắng 20000 đồng
B. Hòa vốn
C. Thua 20000 đồng
D. Thua 40000 đồng
- Câu 9 : Cho cấp số nhân (un) có số hạng đầu u1 = -3 và công bội \(q = \frac{2}{3}\). Số hạng thứ năm của (un) là
A. \(\frac{{27}}{{16}}\)
B. \(\frac{{16}}{{27}}\)
C. \( - \frac{{27}}{{16}}\)
D. \( - \frac{{16}}{{27}}\)
- Câu 10 : Giá trị của giới hạn \(\lim \left(\frac{1}{1.2}+\frac{1}{2.3}+\ldots+\frac{1}{n(n+1)}\right)\) là?
A. 0,5
B. 0
C. 1
D. -1
- Câu 11 : Giá trị của giới hạn \(\lim \left(\frac{1+3+5+\cdots+(2 n+1)}{3 n^{2}+4}\right)\) bằng?
A. \(\frac{1}{3}\)
B. 0
C. 1
D. \(\frac{2}{3}\)
- Câu 12 : Giá trị của giới hạn \(\lim \left(\frac{1}{n^{2}}+\frac{2}{n^{2}}+\ldots+\frac{n-1}{n^{2}}\right)\)
A. 0
B. \(\frac{1}{3}\)
C. \(\frac{1}{2}\)
D. \(\frac{1}{4}\)
- Câu 13 : Giá trị của giới hạn \(\lim \frac{\frac{1}{2}+1+\frac{3}{2}+\ldots+\frac{n}{2}}{n^{2}+1}\) bằng?
A. \(\frac{1}{8}\)
B. \(\frac{1}{2}\)
C. 1
D. \(\frac{1}{4}\)
- Câu 14 : Cho dãy số \(\left(u_{n}\right) \text { với } u_{n}=\sqrt{2}+(\sqrt{2})^{2}+\ldots+(\sqrt{2})^{n}\) Mệnh đề nào sau đây đúng ?
A. \(\lim u_{n}=-\infty\)
B. \(\lim u_{n}=\frac{\sqrt{2}}{1-\sqrt{2}}\)
C. \(\lim u_{n}=+\infty\)
D. \(\text{Không tồn tại }\lim u_{n}\)
- Câu 15 : Tìm giới hạn \(D=\lim\limits _{x \rightarrow 0} \frac{\sqrt[3]{x+1}-1}{\sqrt{2 x+1}-1}\)
A. \(+\infty\)
B. \(\frac{1}{3}\)
C. 0
D. \(-\infty\)
- Câu 16 : Tìm giới hạn \(C=\lim\limits _{x \rightarrow 3} \frac{\sqrt{2 x+3}-3}{x^{2}-4 x+3}\)
A. \(+\infty\)
B. \(-\infty\)
C. \(\frac{1}{6}\)
D. 1
- Câu 17 : Tìm giới hạn \(B=\lim \limits_{x \rightarrow 1} \frac{x^{4}-3 x^{2}+2}{x^{3}+2 x-3}\)
A. \(+\infty\)
B. \(-\frac{2}{5}\)
C. 0
D. \(-\infty\)
- Câu 18 : Tìm giới hạn \(A=\lim\limits _{x \rightarrow 2} \frac{2 x^{2}-5 x+2}{x^{3}-8}\)
A. \(+\infty\)
B. \(-\infty\)
C. \(\frac{1}{4}\)
D. 0
- Câu 19 : Tìm giới hạn \(L=\lim\limits _{x \rightarrow 0} \frac{\left(\sqrt{1+x^{2}}+x\right)^{n}-\left(\sqrt{1+x^{2}}-x\right)^{n}}{x}:\)
A. \(+\infty\)
B. \(-\infty\)
C. 2n
D. 0
- Câu 20 : Cho hàm số \(f(x)=\left\{\begin{array}{l} \frac{x^{3}-8}{x-2} \text { khi } x \neq 2 \\ m x+1 \text { khi } x=2 \end{array}\right.\). Tìm tất cả các giá trị của tham số thực m để hàm số liên tục tại x = 2.
A. \(m=\frac{11}{2}\)
B. \(m=\frac{13}{2}\)
C. \(m=\frac{15}{2}\)
D. \(m=\frac{17}{2}\)
- Câu 21 : Cho hàm số \(f(x)=\left\{\begin{array}{l} 3 x+2 \text { khi } x<-1 \\ x^{2}-1 \text { khi } x \geq-1 \end{array}\right.\). Chọn khẳng định đúng trong các khẳng định sau.
A. f(x) liên tục trên \(\begin{aligned} &\mathbb{R} \end{aligned}\)
B. f(x) liên tục trên \((-\infty ;-1]\)
C. f(x) liên tục trên \([-1 ;+\infty)\)
D. f(x) liên tục tại x=1
- Câu 22 : Cho hàm số \(\begin{equation} f(x)=\frac{x-2}{x^{2}-3 x+2} \end{equation}\) . Hàm số liên tục trên
A. \((-\infty ; 1) \text { và }(1 ;+\infty)\)
B. R
C. \(\begin{array}{l} (-\infty ; 2) \text { và }(2 ;+\infty) \end{array}\)
D. \((-\infty ; 1),(1 ; 2) \text { và }(2 ;+\infty)\)
- Câu 23 : Cho hàm số \(\begin{equation} f(x)=\frac{x^{2}+1}{x^{2}+5 x+6} \end{equation}\). Hàm số f (x) liên tục trên khoảng nào sau đây?
A. \(\begin{equation} \begin{aligned} &(-\infty ; 3) . \end{aligned} \end{equation}\)
B. (2;3)
C. (-3;2)
D. \((-3 ;+\infty) \)
- Câu 24 : Hàm số y=f(x) có đồ thị dưới đây gián đoạn tại điểm có hoành độ bằng bao nhiêu?
A. 0
B. 1
C. 2
D. 3
- Câu 25 : Trong không gian cho hai hình vuông ABCD và ABC'D' có chung cạnh AB và nằm trong hai mặt phẳng khác nhau, lần lượt có tâm O và O'. Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {OO'} \)?
A. 60o
B. 45o
C. 120o
D. 90o
- Câu 26 : Cho tứ diện ABCD có \(A B=a, B D=3 a\) . Gọi M, N lần lượt là trung điểm của AD và BC . Biết AC vuông góc với BD . Tính MN
A. \(M N=\frac{a \sqrt{6}}{3}\)
B. \(M N=\frac{a \sqrt{10}}{2}\)
C. \(M N=\frac{2 a \sqrt{3}}{3}\)
D. \(M N=\frac{3 a \sqrt{2}}{2}\)
- Câu 27 : Trong không gian cho hai tam giác đều ABC và ABCC' có chung cạnh AB và nằm trong hai mặt phẳng khác nhau. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh \(A C, C B, B C^{\prime} \text { và } C^{\prime} A\) . Tứ giác MNPQ là hình gì?
A. Hình bình hành.
B. Hình chữ nhật.
C. Hình vuông.
D. Hình thang.
- Câu 28 : Cho tứ diện ABCD có AB vuông góc với CD . Mặt phẳng (P) song song với AB và CD lần lượt cắt \(B C, D B, A D, A C \text { tại } M, N, P, Q\). Tứ giác MNPQ là hình gì?
A. Hình thang.
B. Hình bình hành.
C. Hình chữ nhật.
D. Tứ giác không phải là hình thang.
- Câu 29 : Cho hình hộp \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime}\) có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau, mệnh đề nào có thể sai?
A. \(A^{\prime} C^{\prime} \perp B D\)
B. \(B B^{\prime} \perp B D\)
C. \(A^{\prime} B \perp D C^{\prime}\)
D. \(B C^{\prime} \perp A^{\prime} D\)
- Câu 30 : Cho tứ diện ABCD . Gọi M N , lần lượt là trung điểm các cạnh BC và AD . Cho biết \(A B=C D=2 a \text { và } M N=a \sqrt{3}\). Tính góc giữa hai đường thẳng AB và CD?
A. \((\widehat{A B, C D})=30^{0}\)
B. \((\widehat{A B, C D})=45^{0}\)
C. \(\widehat{(A B, C D)}=60^{\circ}\)
D. \(\widehat{(A B, C D)}=90^{\circ}\)
- Câu 31 : Cho hình chóp S.ABC có các mặt bên tạo với đáy một góc bằng nhau. Hình chiếu H của S trên ( ABC) là:
A. Tâm đường tròn nội tiếp tam giác ABC.
B. Tâm đường tròn ngoại tiếp tam giác ABC.
C. Trọng tâm tam giác ABC.
D. Giao điểm hai đường thẳng AC và BD.
- Câu 32 : Cho hình chóp đều, chọn mệnh đề sai trong các mệnh đề sau:
A. Chân đường cao của hình chóp đều trùng với tâm của đa giác đáy đó.
B. Tất cả những cạnh của hình chóp đều bằng nhau.
C. Đáy của hình chóp đều là miền đa giác đều.
D. Các mặt bên của hình chóp đều là những tam giác cân
- Câu 33 : Cho hình chóp \(S . A B C D \text { có } S A \perp(A B C D) \text { và } \Delta A B C\) vuông ở B , AH là đường cao của \(\Delta S A B .\) . Khẳng định nào sau đây sai?
A. \(S A \perp B C\)
B. \(A H \perp B C\)
C. \(A H \perp A C\)
D. \(A H \perp S C\)
- Câu 34 : Cho tứ diện ABCD có \(A B=A C \text { và } D B=D C\) . Khẳng định nào sau đây đúng?
A. \(A B \perp(A B C)\)
B. \(A C \perp B D\)
C. \(C D \perp(A B D)\)
D. \(B C \perp A D\)
- Câu 35 : Hình hộp ABCD.A'B'C'D' là hình hộp gì nếu tứ diện AA'B'D' có các cạnh đối vuông góc.
A. Hình lập phương.
B. Hình hộp tam giác.
C. Hình hộp thoi.
D. Hình hộp tứ giác.
- Câu 36 : Trong lăng trụ đều, khẳng định nào sau đây sai?
A. Đáy là đa giác đều.
B. Các mặt bên là những hình chữ nhật nằm trong mặt phẳng vuông góc với đáy.
C. Các cạnh bên là những đường cao.
D. Các mặt bên là những hình bình hành.
- - Trắc nghiệm Hình học 11 Bài 5 Khoảng cách
- - Trắc nghiệm Toán 11 Bài 1 Hàm số lượng giác
- - Trắc nghiệm Toán 11 Bài 2 Phương trình lượng giác cơ bản
- - Trắc nghiệm Toán 11 Bài 3 Một số phương trình lượng giác thường gặp
- - Trắc nghiệm Toán 11 Chương 1 Hàm số lượng giác và Phương trình lượng giác
- - Trắc nghiệm Hình học 11 Bài 2 Phép tịnh tiến
- - Trắc nghiệm Hình học 11 Bài 3 Phép đối xứng trục
- - Trắc nghiệm Hình học 11 Bài 4 Phép đối xứng tâm
- - Trắc nghiệm Hình học 11 Bài 5 Phép quay
- - Trắc nghiệm Hình học 11 Bài 6 Khái niệm về phép dời hình và hai hình bằng nhau