Đề ôn tập chương 4 Đại số Toán 9 có đáp án Trường...
- Câu 1 : Kết luận nào sau đây là đúng khi nói về hàm số y = ax2
A. Hàm số nghịch biến khi a > 0 và x > 0
B. Hàm số nghịch biến khi a < 0 và x < 0
C. Hàm số nghịch biến khi a > 0 và x < 0
D. Hàm số nghịch biến khi a > 0 và x = 0
- Câu 2 : Cho phương trình (m + 1)x2 + 4x + 1 = 0. Tìm m để phương trình đã cho có nghiệm
A. m = -1
B. m = 0
C. m < 1
D. m ≤ 3
- Câu 3 : Cho phương trình x2 – 6x + m = 0. Tìm m để phương trình đã cho vô nghiệm?
A. m > 9
B. m < 9
C. m < 4
D. m > 4
- Câu 4 : Không dùng công thức nghiệm, tìm số nghiệm của phương trình -4x2 + 9 = 0
A. 0
B. 1
C. 3
D. 2
- Câu 5 : Không dùng công thức nghiệm, tính tổng các nghiệm của phương trình 6x2 - 7x = 0
A. \(- \frac{7}{6}\)
B. \( \frac{7}{6}\)
C. \(\frac{6}{7}\)
D. \(- \frac{6}{7}\)
- Câu 6 : Cho phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 - 4ac. Khi đó phương trình có hai nghiệm là:
A. \({x_1} = {x_2} = - \frac{b}{{2a}}\)
B. \({x_1} = \frac{{b + \sqrt \Delta }}{{2a}};{x_2} = \frac{{b - \sqrt \Delta }}{{2a}}\)
C. \({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}};{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\)
D. \({x_1} = \frac{{ - b + \sqrt \Delta }}{a};{x_2} = \frac{{ - b - \sqrt \Delta }}{a}\)
- Câu 7 : Cho phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 - 4ac. Phương trình đã cho vô nghiệm khi:
A. Δ < 0
B. Δ = 0
C. Δ ≥ 0
D. Δ ≤ 0
- Câu 8 : Nghiệm của phương trình x2 + 100x + 2500 = 0 là?
A. 50
B. -50
C. ± 50
D. ± 100
- - Trắc nghiệm Toán 9 Bài 1 Căn bậc hai
- - Trắc nghiệm Toán 9 Bài 2 Căn thức bậc hai và hằng đẳng thức căn bậc hai
- - Trắc nghiệm Toán 9 Bài 3 Liên hệ giữa phép nhân và phép khai phương
- - Trắc nghiệm Toán 9 Bài 4 Liên hệ giữa phép chia và phép khai phương
- - Trắc nghiệm Toán 9 Bài 6 Biến đổi đơn giản biểu thức chứa căn thức bậc hai
- - Trắc nghiệm Toán 9 Bài 8 Rút gọn biểu thức chứa căn bậc hai
- - Trắc nghiệm Toán 9 Bài 9 Căn bậc ba
- - Trắc nghiệm Toán 9 Bài 1 Hàm số y = ax^2 (a ≠ 0)
- - Trắc nghiệm Toán 9 Bài 2 Đồ thị của hàm số y = ax^2 (a ≠ 0)
- - Trắc nghiệm Toán 9 Bài 3 Phương trình bậc hai một ẩn