Đề thi giữa HK2 môn Toán 11 năm 2021 - Trường THPT...
- Câu 1 : Tìm giới hạn \(B = \mathop {\lim }\limits_{x \to 0} \frac{{\cos \;2x - \cos \;3x}}{{x\left( {\sin \;3x\; - \sin \;4x\;} \right)}}\)
A. \( + \infty \)
B. \(- \infty \)
C. \(\frac{5}{2}\)
D. 0
- Câu 2 : Tìm giới hạn \(A = \mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos \;2x}}{{2\sin \;\frac{{3x}}{2}}}\)
A. \( + \infty \)
B. 2
C. 1
D. 0
- Câu 3 : Giá tri đúng của \(\mathop {\lim }\limits_{x \to 3} \frac{{\left| {x - 3} \right|}}{{x - 3}}\)
A. Không tồn tại
B. 0
C. 1
D. \( + \infty \)
- Câu 4 : \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - x + 1}}{{{x^2} - 1}}\) bằng:
A. \( - \infty \)
B. -1
C. 1
D. \( + \infty \)
- Câu 5 : \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {{x^3} - {x^2}} }}{{\sqrt {x - 1} + 1 - x}}\) bằng:
A. -1
B. 0
C. 1
D. \( + \infty \)
- Câu 6 : Chọn kết quả đúng của \(\mathop {\lim }\limits_{x \to {0^ - }} \left( {\frac{1}{{{x^2}}} - \frac{2}{{{x^3}}}} \right)\)
A. \(- \infty \)
B. 0
C. \(+ \infty \)
D. Không tồn tại
- Câu 7 : Tìm giới hạn \(C = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {4{x^2} + x + 1} - 2x} \right)\)
A. \( + \infty \)
B. \( - \infty \)
C. \(\frac{1}{2}\)
D. \(\frac{1}{4}\)
- Câu 8 : Tìm giới hạn \(A\; = \;\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 1} - \sqrt[3]{{2{x^3} + x - 1}}} \right)\)
A. \( +\infty \)
B. \( -\infty \)
C. \(\frac{4}{3}\)
D. 0
- Câu 9 : Tính giới hạn: \(\lim \;\frac{{1 + 3 + 5 + .... + \left( {2n + 1} \right)}}{{3{n^2} + 4}}\)
A. 0
B. \(\frac{1}{3}\)
C. \(\frac{2}{3}\)
D. 1
- Câu 10 : Tính giới hạn: \(\lim \;\frac{{\sqrt {n + 1} - 4}}{{\sqrt {n + 1} + n}}\)
A. 1
B. 0
C. -1
D. 3
- Câu 11 : \(\lim \;\frac{{10}}{{\sqrt {{n^4} + {n^2} + 1} }}\) bằng:
A. 2
B. 10
C. 0
D. 8
- Câu 12 : Cho dãy số un với \({u_n} = \left( {n - 1} \right)\sqrt {\frac{{2n + 2}}{{{n^4} + {n^2} - 1}}} \). Chọn kết quả đúng của limun là:
A. \( - \infty \)
B. 6
C. 10
D. 0
- Câu 13 : Giá trị của \(F = \lim \frac{{{{\left( {n - 2} \right)}^7}{{\left( {2n + 1} \right)}^3}}}{{{{\left( {{n^2} + 2} \right)}^5}}}\) bằng:
A. \( + \infty \)
B. \( - \infty \)
C. 8
D. 7
- Câu 14 : Mạnh cầm một tờ giấy và lấy kéo cắt thành 7 mảnh sau đó nhặt một trong số bảy mảnh giấy đã cắt và lại cắt thành 7 mảnh. Mạnh cứ tiếp tục cắt như vậy. Sau một hồi, Mạnh thu lại và đếm tất cả các mảnh giấy đã cắt. Hỏi kết quả nào sau đây có thể xảy ra?
A. Mạnh thu được 122 mảnh
B. Mạnh thu được 123 mảnh
C. Mạnh thu được 120 mảnh
D. Mạnh thu được 121 mảnh
- Câu 15 : Hãy xem trong lời giải của bài toán sau đây có bước nào bị sai?Bài toán: chứng minh rằng với mọi số nguyên dương n, mệnh đề sau đây đúng:
A. Bước 1
B. Bước 2
C. Bước 3
D. Không có bước nào sai
- Câu 16 : Xét tính tăng giảm của các dãy số sau: \(\left\{\begin{array}{c} u_{1}=1 \\ u_{n+1}=\sqrt[3]{u_{n}^{3}+1}, n \geq 1 \end{array}\right.\)
A. Tăng
B. Giảm
C. Không tăng, không giảm
D. A, B, C đều sai
- Câu 17 : Xét tính bị chặn của các dãy số sau \(u_{n}=\frac{1}{1.3}+\frac{1}{3.5}+\ldots+\frac{1}{(2 n-1)(2 n+1)}\)
A. Bị chặn
B. Không bị chặn
C. Bị chặn trên
D. Bị chặn dưới
- Câu 18 : Xét tính bị chặn của các dãy số sau: \(u_{n}=\frac{1}{1.3}+\frac{1}{2.4}+\ldots+\frac{1}{n \cdot(n+2)}\)
A. Bị chặn
B. Không bị chặn
C. Bị chặn trên
D. Bị chặn dưới
- Câu 19 : Cho cấp số cộng thỏa \(\left\{\begin{array}{c} u_{2}-u_{3}+u_{5}=10 \\ u_{4}+u_{6}=26 \end{array}\right.\).Số hạng tổng quát của cấp số cộng là:
A. \(u_{n}=3 n-2\)
B. \(u_{n}=3 n-4\)
C. \(u_{n}=3 n-3\)
D. \(u_{n}=3 n-1\)
- Câu 20 : Cho cấp số cộng thỏa \(\left\{\begin{array}{c} u_{2}-u_{3}+u_{5}=10 \\ u_{4}+u_{6}=26 \end{array}\right.\). Tính \(S=u_{1}+u_{4}+u_{7}+\ldots+u_{2011}\)
A. S=673015
B. S=6734134
C. S=673044
D. S=141
- Câu 21 : Cho cấp số cộng \(( u_n)\) thỏa \(\left\{\begin{array}{l} u_{5}+3 u_{3}-u_{2}=-21 \\ 3 u_{7}-2 u_{4}=-34 \end{array}\right.\). Tính số hạng thứ 100 của cấp số cộng.
A. \(u_{100}=-243\)
B. \(u_{100}=-295\)
C. \(u_{100}=-231\)
D. \(u_{100}=-294\)
- Câu 22 : Cho sấp số cộng thỏa \(\left\{\begin{array}{l} u_{5}+3 u_{3}-u_{2}=-21 \\ 3 u_{7}-2 u_{4}=-34 \end{array}\right.\). Tính tổng của 15 số hạng đầu của cấp số cộng.
A. \(S_{15}=-244\)
B. \(S_{15}=-274\)
C. \(S_{15}=-253\)
D. \(S_{15}=-285\)
- Câu 23 : Cho cấp số cộng thỏa \(\left\{\begin{array}{l} u_{5}+3 u_{3}-u_{2}=-21 \\ 3 u_{7}-2 u_{4}=-34 \end{array}\right.\). Tính \(S=u_{4}+u_{5}+\ldots+u_{30}\)
A. S=-1286
B. S=-1276
C. S=-1242
D. S=-1222
- Câu 24 : Cho một cấp số cộng (un) có u1 = 1 và tổng 100 số hạng đầu bằng 24850. Tính \(S = \frac{1}{{u_1^{}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ... + \frac{1}{{{u_{49}}{u_{50}}}}\)
A. S = 123
B. \(S = \frac{4}{{23}}\)
C. \(S = \frac{9}{{246}}\)
D. \(S = \frac{{49}}{{246}}\)
- Câu 25 : Cho cấp số nhân \(\left( {{u_n}} \right);{u_1} = 1,q = 2\). Hỏi số 1024 là số hạng thứ mấy?
A. 11
B. 10
C. 9
D. 8
- Câu 26 : Xác định số hạng đầu và công bội của cấp số nhân (un) có \({u_4} - {u_2} = 54\) và \({u_5} - {u_3} = 108\).
A. u1 = 3 và q = 2
B. u1 = 9 và q = 2
C. u1 = 9 và q = -2
D. u1 = 3 và q = -2
- Câu 27 : Với mọi \(n \in N^*\), dãy số (un) nào sau đây không phải là cấp số cộng hay cấp số nhân?
A. \({u_n} = 2017n + 2018\)
B. \({u_n} = {\left( { - 1} \right)^n}{\left( {\frac{{2017}}{{2018}}} \right)^n}\)
C. \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = \frac{{{u_n}}}{{2018}},\,\,\,n = 1,\,2,\,3,\,... \end{array} \right.\)
D. \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = 2017{u_n} + 2018 \end{array} \right.\)
- Câu 28 : Cho hai mặt phẳng (P) và (Q) , a là một đường thẳng nằm trên (P). Mệnh đề nào sau đây sai?
A. Nếu \(a / / b \text { với } b=(P) \cap(O) \text { thì a } / /(O)\)
B. Nếu \((P) \perp(Q) \text { thì } a \perp(Q)\)
C. \(Nếu \,a \text { cắt }(Q) \text { thì }(P) \text { cắt }(Q)\)
D. Nếu \((P) / /(Q) \text { thì } a / /(Q)\)
- Câu 29 : Cho tam giác ABC có diện tích S . Tìm giá trị của k thích hợp thỏa mãn: \(S=\frac{1}{2} \sqrt{\overline{A B}^{2} \cdot \overrightarrow{A C}^{2}-2 k(\overline{A B} \cdot \overrightarrow{A C})^{2}}\)
A. \(k=\frac{1}{4}\)
B. \(k=\frac{1}{2}\)
C. k = 0
D. k = 1
- Câu 30 : Cho hai vectơ \(\vec{a}, \vec{b}\) thỏa mãn: \(|\vec{a}|=4 ;|\vec{b}|=3 ; \vec{a} \cdot \vec{b}=10\) . Xét hai vectơ \(\bar{y}=\vec{a}-\vec{b}; \quad \vec{x}=\vec{a}-2 \vec{b}\) . Gọi α là góc giữa hai vectơ \(\vec{x}, \vec{y}\). Chọn khẳng định đúng?
A. \(\cos \alpha=\frac{-2}{\sqrt{15}}\)
B. \(\cos \alpha=\frac{1}{\sqrt{15}}\)
C. \(\cos \alpha=\frac{3}{\sqrt{15}}\)
D. \(\cos \alpha=\frac{2}{\sqrt{15}}\)
- - Trắc nghiệm Hình học 11 Bài 5 Khoảng cách
- - Trắc nghiệm Toán 11 Bài 1 Hàm số lượng giác
- - Trắc nghiệm Toán 11 Bài 2 Phương trình lượng giác cơ bản
- - Trắc nghiệm Toán 11 Bài 3 Một số phương trình lượng giác thường gặp
- - Trắc nghiệm Toán 11 Chương 1 Hàm số lượng giác và Phương trình lượng giác
- - Trắc nghiệm Hình học 11 Bài 2 Phép tịnh tiến
- - Trắc nghiệm Hình học 11 Bài 3 Phép đối xứng trục
- - Trắc nghiệm Hình học 11 Bài 4 Phép đối xứng tâm
- - Trắc nghiệm Hình học 11 Bài 5 Phép quay
- - Trắc nghiệm Hình học 11 Bài 6 Khái niệm về phép dời hình và hai hình bằng nhau