Đề thi HK1 môn Toán 11 năm 2020 trường THPT Nguyễn...
- Câu 1 : Tập giá trị của hàm số \(y = \sqrt 3 \sin 2x - cos2x\) là đoạn nào dưới đây?
A. [-1; 1]
B. [-2; 2]
C. [-3; 3]
D. [-4; 4]
- Câu 2 : Phương trình \(2\sin \left( {2x + \dfrac{\pi }{4}} \right) = 1\) có các họ nghiệm là gì?
A. \(x = - \dfrac{\pi }{{12}} + k2\pi ;\,k \in \mathbb{Z}\)
B. \(x = \dfrac{{7\pi }}{{12}} + k2\pi ;\,k \in \mathbb{Z}\)
C. Cả A và B
D. Đáp án khác
- Câu 3 : Giá trị nhỏ nhất của hàm số \(y = \dfrac{{\sin x + 2\cos x + 1}}{{\cos x - 3\sin x + 4}}\) là giá trị nào sau đây?
A. 2
B. \(- \dfrac{1}{3}\)
C. \(\dfrac{{ - 1}}{2}\)
D. 1
- Câu 4 : Tổng các nghiệm thuộc đoạn \(\left[ { - \pi ;\pi } \right]\) của phương trình \(\cos 5x + \cos x = \sin 2x - \sin 4x\) bằng bao nhiêu?
A. 0
B. \(2\pi\)
C. \(4\pi\)
D. \(6\pi\)
- Câu 5 : Tìm tập xác định của hàm số: \(y = \dfrac{1}{{\sqrt {1 - cos3x} }}\)
A. \(\left\{ {k\dfrac{\pi }{3};k \in \mathbb{Z}} \right\}\)
B. \(\mathbb{R}\backslash \left\{ {k\dfrac{{2\pi }}{3};k \in \mathbb{Z}} \right\}\)
C. \(\left\{ {\dfrac{{k2\pi }}{3};k \in \mathbb{Z}} \right\}\)
D. \(\mathbb{R}\backslash \left\{ {\dfrac{{k\pi }}{3};k \in \mathbb{Z}} \right\}\)
- Câu 6 : Hàm số \(y = \sin 3x.\cos x\) là một hàm số tuần hoàn có chu kì bao nhiêu?
A. \(\pi\)
B. \(\dfrac{\pi }{4}\)
C. \(\dfrac{\pi }{3}\)
D. \(\dfrac{\pi }{2}\)
- Câu 7 : Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số \(y = {\sin ^4}x - 2{\cos ^2}x + 1\).
A. \(M = 2, m = -2\)
B. M = 1, m = 0
C. M = 4, m = -1
D. M = 2, m = -1
- Câu 8 : Trong các phương trình sau đây,phương trình nào có tập nghiệm là \(x = - \dfrac{\pi }{3} + k2\pi \) và \(x = \dfrac{{4\pi }}{3} + k2\pi ,\,\,\,(k \in \mathbb{Z})\).
A. \(\sin \,x = \dfrac{2}{{\sqrt 2 }}\)
B. \(\sin \,x = \dfrac{1}{{\sqrt 2 }}\)
C. \(\sin \,x = - \dfrac{{\sqrt 3 }}{2}\)
D. \(\sin \,x = \dfrac{{\sqrt 2 }}{{\sqrt 3 }}\)
- Câu 9 : Phương trình \(\tan \left( {3x - {{15}^0}} \right) = \sqrt 3 \) có các nghiệm là giá trị nào dưới đây?
A. \(x = {60^0} + k{180^0}\)
B. \(x = {75^0} + k{180^0}\)
C. \(x = {75^0} + k{60^0}\)
D. \(x = {25^0} + k{60^0}\)
- Câu 10 : Nghiệm của phương trình \(\tan 4x.\cot 2x = 1\) là giá trị nào dưới đây?
A. \(k\pi ,k \in \mathbb{Z}\)
B. \(\dfrac{\pi }{4} + \dfrac{{k\pi }}{2},k \in \mathbb{Z}\)
C. \(\dfrac{{k\pi }}{2},k \in \mathbb{Z}\)
D. Vô nghiệm
- Câu 11 : Từ các số 1, 2, 3 có thể lập được bao nhiêu số tự nhiên khác nhau và mỗi số có các chữ số khác nhau?
A. 15
B. 20
C. 72
D. 36
- Câu 12 : Tìm số nguyên dương n sao cho \(C_n^1 + C_n^2 + C_n^3 = \dfrac{{7n}}{2}\).
A. n = 3
B. n = 6
C. n = 4
D. n = 8
- Câu 13 : Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ?
A. 6
B. 72
C. 720
D. 144
- Câu 14 : Tìm số hạng không chứa x trong khai triển \({\left( {x - \dfrac{2}{x}} \right)^{12}}(x \ne 0)\).
A. 59136
B. 213012
C. 12373
D. 139412
- Câu 15 : Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ?
A. \((C_7^2 + C_6^5) + (C_7^1 + C_6^3) + C_6^4\)
B. \((C_7^2.C_6^2) + (C_7^1.C_6^3) + C_6^4\)
C. \(C_{11}^2.C_{12}^2\)
D. \(C_7^2.C_6^2 + C_7^3.C_6^1 + C_7^4\)
- Câu 16 : Trong khai triển \({\left( {a - 2b} \right)^8}\) hệ số của số hạng chứa \({a^4}.{b^4}\) là giá trị nào dưới đây?
A. 140
B. 560
C. 1120
D. 70
- Câu 17 : Giá trị n thỏa mãn \(3A_n^2 - A_{2n}^2 + 42 = 0\) là bao nhiêu?
A. 8
B. 6
C. 9
D. 10
- Câu 18 : Nếu tất cả các đường chéo của một đa giác đều 12 cạnh được vẽ thì số đường chéo là bao nhiêu?
A. 66
B. 121
C. 132
D. 54
- Câu 19 : Trong khai triển \({\left( {x + \dfrac{2}{{\sqrt x }}} \right)^6}\), hệ số của \({x^3},(x > 0)\) là giá trị nào dưới đây?
A. 60
B. 80
C. 160
D. 240
- Câu 20 : Xếp 6 người A, B, C, D, E, F vào một ghế dài. Hỏi có bao nhiêu cách sắp xếp sao cho A và F ngồi ở hai đầu ghế?
A. 48
B. 42
C. 46
D. 50
- Câu 21 : Từ các số 1, 2, 3, 4, 5, 6, 7, 8, 9 có thể lập được bao nhiêu số tự nhiên có 6 chữ số khác nhau và tổng các chữ số ở hàng chục, hàng trăm, hàng nghìn bằng 8?
A. 1300
B. 1440
C. 1500
D. 1600
- Câu 22 : Cho hình bình hành ABCD. Ảnh của điểm D qua phép tịnh tiến theo véctơ \(\overrightarrow {AB} \) là điểm nào dưới đây?
A. B
B. C
C. D
D. A
- Câu 23 : Phép tịnh tiến theo \(\overrightarrow v = \left( {1;0} \right)\) biến điểm \(A\left( { - 2;3} \right)\) thành điểm nào dưới đây?
A. \(A'\left( {3;0} \right)\)
B. \(A'\left( { - 3;0} \right)\)
C. \(A'\left( { - 1;3} \right)\)
D. \(A'\left( { - 1;6} \right)\)
- Câu 24 : Trong mặt phẳng tọa độ Oxy, tìm phương trình đường thẳng \(\Delta '\) là ảnh của đường thẳng \(\Delta :x + 2y - 1 = 0\) qua phép tịnh tiến theo véctơ \(\vec v = \left( {1; - 1} \right)\).
A. \(\Delta ':x + 2y - 3 = 0\)
B. \(\Delta ':x + 2y = 0\)
C. \(\Delta ':x + 2y + 1 = 0\)
D. \(\Delta ':x + 2y + 2 = 0\)
- Câu 25 : Cho phép quay \({Q_{\left( {O,\;\varphi } \right)}}\) biến điểm A thành điểm A' và biến điểm M thành điểm M'. Mệnh đề nào sau đây là sai?
A. \(\overrightarrow {AM} = \overrightarrow {A'M'}\)
B. \(\widehat {\left( {OA,{\rm{ }}OA'} \right)} = \widehat {\left( {OM,{\rm{ }}OM'} \right)} = \varphi\)
C. \(\widehat {\left( {\overrightarrow {AM} ,{\rm{ }}\overrightarrow {A'M'} } \right)} = \varphi\) với \(0 \le \varphi \le \pi\)
D. AM = A'M'
- Câu 26 : Trong mặt phẳng với hệ tọa độ Oxy , cho điểm A(1;2) và một góc \(\alpha = {90^0}\). Tìm trong các điểm sau điểm nào là ảnh của A qua qua phép quay tâm O góc quay \(\alpha = {90^0}\).
A. A'(1; - 2)
B. A'(2;1)
C. A'( - 2;1)
D. A'( - 2; - 1)
- Câu 27 : Trong mặt phẳng tọa độ Oxy, cho đường tròn \(\left( {\rm{C}} \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 4\). Ảnh của (C) qua phép vị tự tâm \(I = \left( {2; - 2} \right)\) tỉ số vị tự bằng 3 là đường tròn có phương trình là đáp án nào dưới đây?
A. \({\left( {x + 1} \right)^2} + {\left( {y - 10} \right)^2} = 36\)
B. \({\left( {x - 2} \right)^2} + {\left( {y - 6} \right)^2} = 36\)
C. \({\left( {x - 1} \right)^2} + {\left( {y - 10} \right)^2} = 36\)
D. \({\left( {x - 2} \right)^2} + {\left( {y + 4} \right)^2} = 36\)
- Câu 28 : Phép vị tự tâm O tỉ số \(k\left( {k \ne 0} \right)\) biến mỗi điểm M thành điểm M'. Mệnh đề nào sau đây đúng?
A. \(k\overrightarrow {OM} = \overrightarrow {OM'}\)
B. \(\overrightarrow {OM} = k\overrightarrow {OM'} \)
C. \(\overrightarrow {OM} = - k\overrightarrow {OM'}\)
D. \(\overrightarrow {OM} = - \overrightarrow {OM'}\)
- Câu 29 : Cho đường thẳng d: 3x + y + 3 = 0. Viết phương trình của đường thẳng d' là ảnh của d qua phép dời hình có được bằng cách thược hiện liên tiếp phép quay tâm I(1;2), góc \(- {180^0}\) và phép tịnh tiến theo vec tơ \(\overrightarrow v = \left( { - 2;1} \right)\)
A. d': 3x + y - 8 = 0
B. d': x + y - 8 = 0
C. d': 2x + y - 8 = 0
D. d': 3x + 2y - 8 = 0
- Câu 30 : Các phép biến hình biến đường thẳng thành đường thẳng song song hoặc trùng với nó có thể kể ra là gì?
A. Phép vị tự.
B. Phép đồng dạng, phép vị tự.
C. Phép đồng dạng, phép dời hình, phép vị tự.
D. Phép dời dình, phép vị tự.
- Câu 31 : Cho hình chóp S.ABCD, đáy là hình thang, đáy lớn AB, Gọi O là giao của AC với BD. M là trung điểm SC. Tìm giao điểm của đường thẳng AM và (SBD).
A. I với \(I = AM \cap SO\)
B. I với \(I = AM \cap BC\)
C. I với \(I = AM \cap SB\)
D. I với \(I = AM \cap BC\)
- Câu 32 : Tứ diện ABCD, gọi G là trọng tâm tam giác ACD, M thuộc đoạn thẳng BC sao cho CM = 2MB. Chọn mệnh đề đúng trong các mệnh đề sau?
A. MG // (ABC)
B. MG // (ABD)
C. MG // CD
D. MG // BD
- Câu 33 : Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây là đúng?
A. d qua S và song song với BC
B. d qua S và song song với CD
C. d qua S và song song với AB
D. d qua S và song song với BD
- - Trắc nghiệm Hình học 11 Bài 5 Khoảng cách
- - Trắc nghiệm Toán 11 Bài 1 Hàm số lượng giác
- - Trắc nghiệm Toán 11 Bài 2 Phương trình lượng giác cơ bản
- - Trắc nghiệm Toán 11 Bài 3 Một số phương trình lượng giác thường gặp
- - Trắc nghiệm Toán 11 Chương 1 Hàm số lượng giác và Phương trình lượng giác
- - Trắc nghiệm Hình học 11 Bài 2 Phép tịnh tiến
- - Trắc nghiệm Hình học 11 Bài 3 Phép đối xứng trục
- - Trắc nghiệm Hình học 11 Bài 4 Phép đối xứng tâm
- - Trắc nghiệm Hình học 11 Bài 5 Phép quay
- - Trắc nghiệm Hình học 11 Bài 6 Khái niệm về phép dời hình và hai hình bằng nhau