Top 4 Đề kiểm tra 15 phút Toán 11 Chương 3 Hình họ...
- Câu 1 : Cho hình lăng trụ ABC.A'B'C', M là trung điểm của BB’. Đặt . Biểu diễn theo các vecto .
- Câu 2 : Trong không gian cho điểm O bất kì và bốn điểm A, B, C, D không thẳng hàng. Chứng minh điều kiện cần và đủ để tứ giác ABCD là hình bình hành là:
- Câu 3 : Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt . Chứng minh: .
- Câu 4 : Cho hình lập phương ABCD.EFGH có cạnh bằng a. Tính
- Câu 5 : Cho tứ diện ABCD. Trên các cạnh AD và BC lần lượt lấy M, N sao cho AM = 3MD; BN = 3NC. Gọi P, Q lần lượt là trung điểm của AD và BC. Chứng minh các vectơ đồng phẳng.
- Câu 6 : Cho tứ diện ABCD có AB = CD = a, (I, J lần lượt là trung điểm của BC và AD). Số đo góc giữa hai đường thẳng AB và CD là:
- Câu 7 : Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. Biết SA = SC và SB = SD. Chứng minh: SO ⊥ AB.
- Câu 8 : Cho tứ diện ABCD có AC = AD và BC = BD. Gọi I là trung điểm của CD. Chứng minh: Góc giữa hai mặt phẳng (ACD) và (BCD) là
- Câu 9 : Cho tứ diện ABCD có AB⊥(BCD). Trong ΔBCD vẽ các đường cao BE và DF cắt nhau ở O. Trong mp(ADC), vẽ DK⊥AC tại K. Chứng minh: (ADC)⊥(ABE)
- Câu 10 : Cho tứ diện ABCD có AB⊥(BCD). Trong ΔBCD vẽ các đường cao BE và DF cắt nhau ở O. Trong mp(ADC), vẽ DK⊥AC tại K. Chứng minh: (ADC)⊥(DFK)
- Câu 11 : Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (BCD). Gọi BE và DF là hai đường cao của tam giác BCD, DK là đường cao của tam giác ACD. Chứng minh (ABE)⊥(ADC)
- Câu 12 : Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (BCD). Gọi BE và DF là hai đường cao của tam giác BCD, DK là đường cao của tam giác ACD. Chứng minh (ABC)⊥(DFK)
- Câu 13 : Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (BCD). Gọi BE và DF là hai đường cao của tam giác BCD, DK là đường cao của tam giác ACD. Chứng minh (DFK)⊥(ACD)
- Câu 14 : Cho hình chóp tam giác S.ABC với SA vuông góc với mp(ABC); SA = 3a. Diện tích tam giác ABC bằng ; BC = a. Khoảng cách từ S đến BC bằng bao nhiêu?
- Câu 15 : Cho hình chóp S.ABC trong đó SA; AB; BC vuông góc với nhau từng đôi một. Biết . Khoảng cách từ A đến (SBC) bằng:
- Câu 16 : Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và đường cao . Khoảng cách từ điểm O đến cạnh bên SA bằng:
- Câu 17 : Cho hình thang vuông ABCD vuông ở A và D, AD = 2a. Trên đường thẳng vuông góc tại D với (ABCD) lấy điểm S với
Xem thêm
- - Trắc nghiệm Hình học 11 Bài 5 Khoảng cách
- - Trắc nghiệm Toán 11 Bài 1 Hàm số lượng giác
- - Trắc nghiệm Toán 11 Bài 2 Phương trình lượng giác cơ bản
- - Trắc nghiệm Toán 11 Bài 3 Một số phương trình lượng giác thường gặp
- - Trắc nghiệm Toán 11 Chương 1 Hàm số lượng giác và Phương trình lượng giác
- - Trắc nghiệm Hình học 11 Bài 2 Phép tịnh tiến
- - Trắc nghiệm Hình học 11 Bài 3 Phép đối xứng trục
- - Trắc nghiệm Hình học 11 Bài 4 Phép đối xứng tâm
- - Trắc nghiệm Hình học 11 Bài 5 Phép quay
- - Trắc nghiệm Hình học 11 Bài 6 Khái niệm về phép dời hình và hai hình bằng nhau