Đề thi giữa HK2 môn Toán 11 năm 2021 - Trường THPT...
- Câu 1 : Cho hình chóp S. ABC có đáy là tam giác đều cạnh a, \(SA \bot (ABC)\,,SA = \dfrac{a}{2}\).Từ A kẻ \(AH \bot SM\) với M là trung điểm của của BC. Khi dđó góc giữa hai vec tơ \(\overrightarrow {SA} \,,\overrightarrow {AH} \) bằng:
A. 40o
B. 45o
C. 90o
D. 150o
- Câu 2 : Tìm giới hạn \(\mathop {\lim }\limits_{x \to 1} \dfrac{{{x^4} - 3{x^2} + 2}}{{{x^3} + 2x - 3}}\)
A. \(+ \infty \)
B. \(- \infty\)
C. \(\dfrac{{ - 2}}{5}\)
D. 0
- Câu 3 : Giả sử \(\lim \,{u_n} = L,\,\lim {v_n} = M\). Chọn mệnh đề đúng:
A. \(\lim ({u_n} + {v_n}) = L + M\)
B. \(\lim ({u_n} + {v_n}) = L - M\)
C. \(\lim ({u_n} - {v_n}) = L + M\)
D. \(\lim ({u_n} - {v_n}) = L.M\)
- Câu 4 : Tìm giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt[3]{{x + 1}} - 1}}{{\sqrt[4]{{2x + 1}} - 1}}\)
A. \(+ \infty\)
B. \(- \infty\)
C. \(\dfrac{2}{3}\)
D. 0
- Câu 5 : Tìm a để hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{{x^2} + ax + 1}\\{2{x^2} - x + 3a}\end{array}} \right.\,\,\,\begin{array}{*{20}{c}}{khi}\\{khi}\end{array}\,\,\,\begin{array}{*{20}{c}}{x > 1}\\{x \le 1}\end{array}\) có giới hạn khi \(x \to 1\).
A. 0
B. 1
C. \(\dfrac{{ - 1}}{6}\)
D. \(\dfrac{1}{2}\)
- Câu 6 : Cho hàm số \(f(x) = \left\{ \begin{array}{l}\dfrac{{\sqrt {{{(x - 3)}^2}} }}{{x - 3}}\,\,\,\,\,khi\,\,x \ne 3\\m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x = 3\end{array} \right.\). Tìm tất cả các giá trị của tham số thực m để hàm số liên tục tại x = 3.
A. \(m \in \emptyset\)
B. \(m \in\mathbb R\)
C. m = 1
D. m = -1
- Câu 7 : Trong các mệnh đề sau đâu là mệnh đề đúng?
A. \(\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} + 3x + 2}}{{\left| {x + 1} \right|}} = - 1\)
B. \(\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} + 3x + 2}}{{\left| {x + 1} \right|}} = - 0\)
C. \(\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} + 3x + 2}}{{\left| {x + 1} \right|}} = 1\)
D. Không tồn tại \(\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} + 3x + 2}}{{\left| {x + 1} \right|}}\).
- Câu 8 : Tính \(\mathop {\lim }\limits_{x \to - \infty } ({x^2} + x - 1)\)
A. \(+ \infty \)
B. \(- \infty \)
C. -2
D. 1
- Câu 9 : Tính \(\mathop {\lim }\limits_{x \to 1} \dfrac{{x + 1}}{{x - 2}}\)
A. \(- \infty\)
B. \(+\infty\)
C. -2
D. 1
- Câu 10 : Giả sử \(\lim \,{u_n} = L\). Khi đó:
A. \(\lim \left| {{u_n}} \right| = L\)
B. \(\lim \left| {{u_n}} \right| = - L\)
C. \(\lim \,{u_n} = \left| L \right|\)
D. \(\lim \left| {{u_n}} \right| = \left| L \right|\)
- Câu 11 : Tính \(\lim (\sqrt {{n^2} + 2n + 2} + n)\)
A. \( + \infty \)
B. \( - \infty \)
C. 2
D. 1
- Câu 12 : Giá trị của \(\lim (\sqrt {{n^2} + 6n} - n)\) bằng
A. \( + \infty \)
B. \( - \infty \)
C. 3
D. 1
- Câu 13 : Kết quả đúng của \(\lim \dfrac{{2 - {5^{n - 2}}}}{{{3^n} + {{2.5}^n}}}\) là
A. \(\dfrac{{ - 5}}{2}\)
B. \(\dfrac{{ - 1}}{{50}}\)
C. \(\dfrac{5}{2}\)
D. \(\dfrac{{ - 25}}{2}\)
- Câu 14 : Cho hàm số \(f(x)\left\{ \begin{array}{l}\dfrac{{\sin 5x}}{{5x}}\,\,\,\,khi\,\,x \ne 0\\a + 2\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\) . Tìm a để hàm số liên tục tại x = 0.
A. 1
B. -1
C. -2
D. 2
- Câu 15 : Chọn kết quả đúng của \(\lim \dfrac{{\sqrt {{n^3} - 2n + 5} }}{{3 + 5n}}\)
A. 5
B. \(\dfrac{2}{5}\)
C. \( - \infty \)
D. \( + \infty \)
- Câu 16 : Với số nguyên dương ta có:
A. \(\mathop {\lim }\limits_{x \to + \infty } {x^k} = + \infty \)
B. \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = + \infty \)
C. \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = - \infty \)
D. \(\mathop {\lim }\limits_{x \to + \infty } {x^k} = - \infty \)
- Câu 17 : Giá trị của \(\lim \dfrac{{\sqrt {n + 1} }}{{n + 2}}\) bằng
A. \( + \infty \)
B. \( - \infty \)
C. 0
D. 1
- Câu 18 : Tìm khẳng định đúng trong các khẳng định sau(1) \(f(x) = {x^5} - {x^2} + 1\) liên tục trên \(\mathbb{R}\)
A. Chỉ (1) và (2)
B. Chỉ (2) và (3)
C. Chỉ (1) và (3)
D. Chỉ (1)
- Câu 19 : Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\sqrt {4 - {x^2}} }\\1\end{array}} \right.\,\,\begin{array}{*{20}{c}}{, - 2 \le x \le 2}\\{,x > 2}\end{array}\). Tìm khẳng định đúng trong các khẳng định sau:(1) \(f(x)\)không xác định tại x = 3
A. Chỉ (1)
B. Chỉ (1), (2)
C. Chỉ (1), (3)
D. Tất cả đều sai
- Câu 20 : Chọn giá trị của f(0) để hàm số \(f(x) = \dfrac{{\sqrt {2x + 1} - 1}}{{x(x + 1)}}\) liên tục tại điểm x = 0
A. 1
B. 2
C. 3
D. 4
- Câu 21 : Tính \(\mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 6{x^2} + 11x - 6}}{{{x^2} - 4}}\) bằng?
A. \(\dfrac{1}{4}.\)
B. \(\dfrac{1}{3}.\)
C. \( - \dfrac{1}{4}.\)
D. \( - \dfrac{1}{3}.\)
- Câu 22 : Cho hàm số \(f(x) = \sqrt {{x^2} + 2x + 4} - \sqrt {{x^2} - 2x + 4} \). Khẳng định nào sau đây là đúng?
A. Giới hạn của \(f(x)\) khi \(x \to \infty \) là 0.
B. Giới hạn của \(f(x)\) khi \(x \to \infty \) là 2.
C. Giới hạn của \(f(x)\) khi \(x \to \infty \) là -2.
D. Không tồn tại giới hạn của \(f(x)\) khi \(x \to \infty \).
- Câu 23 : Tính \(\mathop {\lim }\limits_{x \to 2} \sqrt {\dfrac{{{x^4} + 3x - 1}}{{2{x^2} - 1}}} \) bằng?
A. 3
B. \(\sqrt 3 .\)
C. -3
D. \(\dfrac{1}{3}.\)
- Câu 24 : Cho hai vec tơ \(\overrightarrow a \,,\,\,\overrightarrow b \) không cùng phương và vec tơ \(\overrightarrow c \). Điều kiện cần và đủ để ba vec tơ \(\overrightarrow a \,,\,\overrightarrow b \,,\,\overrightarrow c \) đồng phẳng là:
A. Có cặp số m, n duy nhất sao cho \(\overrightarrow c = m\overrightarrow a + n\overrightarrow b. \)
B. Có cặp số m, n sao cho \(\overrightarrow c = m\overrightarrow a + n\overrightarrow b \).
C. Có số m duy nhất sao cho \(\overrightarrow a + \overrightarrow b = m\overrightarrow c \).
D. Có số m sao cho \(\overrightarrow a + \overrightarrow b = m\overrightarrow c \).
- Câu 25 : Cho hình hộp ABCD.A’B’C’D’ . Tìm mệnh đề đúng.
A. \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = \overrightarrow {AD} \).
B. \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = \overrightarrow {AB'} \).
C. \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = \overrightarrow {AC'} \).
D. \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = \overrightarrow {AD'} \).
- Câu 26 : Cho hình lập phương ABCD.EFGH, thực hiện phép toán \(\overrightarrow x = \overrightarrow {CB} + \overrightarrow {CD} + \overrightarrow {CG} \).
A. \(\overrightarrow x = \overrightarrow {GE} \).
B. \(\overrightarrow x = \overrightarrow {CE} \).
C. \(\overrightarrow x = \overrightarrow {CH} \).
D. \(\overrightarrow x = \overrightarrow {EC} \).
- Câu 27 : Trong các mệnh đề sau đây, tìm mệnh đề đúng.
A. Nếu mp \(\left( \alpha \right)\) song song với mp \(\left( \beta \right)\) và đường thẳng \(a \subset \left( \alpha \right)\) thì a song song \(\left( \beta \right)\).
B. Nếu mp \(\left( \alpha \right)\) song song với mp \(\left( \beta \right)\) và đường thẳng \(a \subset \left( \alpha \right)\), đường thẳng \(b \subset \left( \beta \right)\) thì a song song với b.
C. Nếu đường thẳng a song song với mp \(\left( \alpha \right)\) và đường thẳng b song song \(\left( \beta \right)\) thì a song song song với b.
D. Nếu đường thẳng a song song với đường thẳng b và \(a \subset \left( \alpha \right)\,,\,\,b \subset \left( \beta \right)\) thì \(\left( \alpha \right)\,,\,\left( \beta \right)\) song song với nhau.
- Câu 28 : Cho hình chóp S.ABCD , với O là giao điểm của AC và BD. Mệnh đề nào sau đây đúng?
A. Nếu ABCD là hình bình hành thì \(\overrightarrow {SA} + \overrightarrow {SB} = \overrightarrow {SC} + \overrightarrow {SD} \).
B. Nếu \(SA + SC = SB + SD\) thì ABCD là hình bình hành.
C. Nếu ABCD là hình bình hành thì \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = \overrightarrow 0 \).
D. Nếu \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = 4\overrightarrow {SO} \) thì ABCD là hình bình hành.
- Câu 29 : Cho tứ diện ABCD có BCD là tam giác đều cạnh bằng a, AB vuông góc với (BCD) và AB = 2a. Tang của góc giữa AC và mặt phẳng (ABD) bằng:
A. \(\sqrt 5 \)
B. 1
C. Không xác định.
D. \(\dfrac{{\sqrt {51} }}{{17}}\).
- Câu 30 : Cho tứ diện ABCD. Các điểm M và N lần lượt là trung điểm của AB và CD. Không thể kết luận được điểm G là trọng tâm của tứ diện ABCD trong trường hợp nào sau đây ?
A. GM = GN
B. \(\overrightarrow {GM} + \overrightarrow {GN} = \overrightarrow 0 \).
C. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \).
D. \(\overrightarrow {PG} = \dfrac{1}{4}\left( {\overrightarrow {PA} + \overrightarrow {PB} + \overrightarrow {PC} + \overrightarrow {PD} } \right)\) với P là điểm bất kì.
- Câu 31 : Cho hình chóp S.ABCD có đáy là hình thoi BACD cạnh A có góc \(\widehat {BAD} = {60^0}\) và SA = SB = SD =\(\frac{{a\sqrt 3 }}{2}\). Xác định số đo góc giữa hai mặt phẳng (SAC) và (ABCD) là:
A. 30o
B. 60o
C. 45o
D. 90o
- Câu 32 : Trong không gian có ba đường thẳng phân biệt a, b, c. Khẳng định nào sau đây sai?
A. Nếu a và b cùng nằm trong một mặt phẳng và cùng vuông góc với c thì \(a \bot b\).
B. Nếu a // b và \(c \bot a\) thì \(c \bot b\).
C. Nếu a , b và c đồng phẳng và a , b cùng vuông góc với c thì a // b.
D. Nếu a // b thì góc giữa a và c bằng góc giữa b và c.
- Câu 33 : Cho chóp S. ABCD có \(SA \bot \left( {ABCD} \right)\) và đáy là hình vuông . Từ A kẻ \(AM \bot SB\). Khẳng định nào sau đây đúng?
A. \(SB \bot \left( {MAC} \right)\).
B. \(AM \bot \left( {SAD} \right)\).
C. \(AM \bot \left( {SBD} \right)\).
D. \(AM \bot \left( {SBC} \right)\).
- Câu 34 : Cho hình chóp S. ABCD có ABCD là hình bình hành tâm O. Trong các mệnh đề sau, mệnh đề nào sai ?
A. \(\overrightarrow {SA} + \overrightarrow {SC} = 2\overrightarrow {SO} \).
B. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \).
C. \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).
D. \(\overrightarrow {SA} + \overrightarrow {SB} = \overrightarrow {SC} + \overrightarrow {SD} \).
- Câu 35 : Cho hình lăng trụ tam giác ABC.A’B’C’. Véc tơ nào sau đây là véc tơ chỉ phương của đường thẳng AB ?
A. \(\overrightarrow {A'C'} \).
B. \(\overrightarrow {A'C} \).
C. \(\overrightarrow {A'B'} \).
D. \(\overrightarrow {A'B} \).
- - Trắc nghiệm Hình học 11 Bài 5 Khoảng cách
- - Trắc nghiệm Toán 11 Bài 1 Hàm số lượng giác
- - Trắc nghiệm Toán 11 Bài 2 Phương trình lượng giác cơ bản
- - Trắc nghiệm Toán 11 Bài 3 Một số phương trình lượng giác thường gặp
- - Trắc nghiệm Toán 11 Chương 1 Hàm số lượng giác và Phương trình lượng giác
- - Trắc nghiệm Hình học 11 Bài 2 Phép tịnh tiến
- - Trắc nghiệm Hình học 11 Bài 3 Phép đối xứng trục
- - Trắc nghiệm Hình học 11 Bài 4 Phép đối xứng tâm
- - Trắc nghiệm Hình học 11 Bài 5 Phép quay
- - Trắc nghiệm Hình học 11 Bài 6 Khái niệm về phép dời hình và hai hình bằng nhau