Top 4 Đề kiểm tra 1 tiết Toán 11 Chương 3 Hình học...
- Câu 1 : Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, E, F lần lượt là trung điểm SA, SB, SC, SD. Trong các đường thẳng sau, đường thẳng nào không song song với IJ?
A. EF
B. CD
C. AD
D. AB
- Câu 2 : Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, AD, CD, BC. Mệnh đề nào sau đây sai ?
A. MN// BD và
B. MN // PQ và MN = PQ.
C. MNPQ là hình bình hành.
D. MP và NQ chéo nhau.
- Câu 3 : Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm AC, BC, BD, AD. Tìm điều kiện để tứ giác MNPQ là hình thoi.
A. AB = BC.
B. BC = AD.
C. AC = BD.
D. AB = CD.
- Câu 4 : Cho hình chóp S.ABCD. Gọi M, N, P, Q, R, T lần lượt là trung điểm AC, BD, BC, CD, SA, SD. Bốn điểm nào sau đây đồng phẳng?
A. M, P, R, T
B. M, Q, T, R
C. M, N, R, T
D. P, Q, R, T
- Câu 5 : Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, I là trung điểm cạnh SC. Khẳng định nào sau đây sai?
A. IO // mp(SAB) .
B. IO // mp(SAD).
C. mp (IBD) cắt hình chóp S.ABCD theo thiết diện là một tứ giác.
D. (IBD) ∩ (SAC).
- Câu 6 : Cho tứ diện ABCD với M, N lần lượt là trọng tâm các tam giác ABD, ACD. Xét các khẳng định sau:
A. I, II.
B. II, III.
C. III, IV.
D. I, IV.
- Câu 7 : Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Lấy điểm I trên đoạn SO sao cho , BI cắt SD tại M và DI cắt SB tại N. MNBD là hình gì ?
A. Hình thang.
B. Hình bình hành.
C. Hình chữ nhật.
D. Tứ diện vì MN và BD chéo nhau.
- Câu 8 : Cho hình hộp ABCD. A'B'C'D'. Gọi I và K lần lượt là tâm của hình bình hành ABB’A’ và BCC’B’. Khẳng định nào sau đây sai?
A.
B. Bốn điểm I,K,C,A đồng thẳng
C.
D. Ba vecto không đồng phẳng
- Câu 9 : Trong không gian cho ba đường thẳng phân biệt a,b,c. Khẳng định nào sau đây đúng?
A. Nếu a và b cùng vuông góc với c thì a // b.
B. Nếu a //b và c ⊥ a thì c ⊥ b.
C. Nếu góc giữa a và c bằng góc giữa b và c thì a // b.
D. Nếu a và b cùng nằm trong mp (α) // c thì góc giữa a và c bằng góc giữa b và c.
- Câu 10 : Cho tứ diện ABCD có AB = CD. Gọi I, J, E, F lần lượt là trung điểm của AC, BC, BD, AD. Góc giữa (IE, JF) bằng:
A.
B.
C.
D.
- Câu 11 : Cho tứ diện ABCD có AB = AC = AD = a và . Hãy xác định góc giữa cặp vectơ
A.
B.
C.
D.
- Câu 12 : Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh bằng a và SA ⊥ (ABCD). Biết . Tính góc giữa SC và mp (ABCD).
A. 30°
B. 45°
C. 60°
D.75°
- Câu 13 : Cho tứ diện ABCD có AC = AD và BC = BD. Gọi I là trung điểm của CD. Khẳng định nào sau đây sai?
A. Góc giữa hai mặt phẳng (ABC) và (ABD) là
B. Góc giữa hai mặt phẳng (ACD) và (BCD) là
C. (BCD) ⊥ (AIB).
D. (ACD) ⊥ (AIB).
- Câu 14 : Phần I:Trắc nghiệm
A.
B.
C.
D.
- Câu 15 : Cho hình chóp S.ABC có SA = SB = SC và . Hãy xác định góc giữa cặp vectơ và ?
A. 60°
B. 120°
C. 45°
D. 90°
- Câu 16 : Trong không gian cho đường thẳng Δ và điểm O. Qua O có mấy đường thẳng vuông góc với Δ cho trước?
A. 1
B. 2
C. 3
D. Vô số.
- Câu 17 : Cho hình chóp S.ABCD có SA ⊥ (ABCD) và ΔABC vuông ở B, AH là đường cao của ΔSAB. Khẳng định nào sau đây sai?
A. SA ⊥ BC
B. AH ⊥ BC
C. AH ⊥ AC
D. AH ⊥ SC
- Câu 18 : Cho hình chóp S.ABC có đáy ABC là tam giác vuông cạnh huyền BC = a. Hình chiếu vuông góc của S lên mp(ABC) trùng với trung điểm BC, biết SB = a. Tính số đo của góc giữa SA và mp(ABC).
A. 30°
B. 45°
C. 60°
D. 75°
- Câu 19 : Cho hình chóp S.ABC có hai mặt bên (SAB) và (SAC) vuông góc với mặt phẳng (ABC), tam giác ABC vuông cân ở A và có đường cao AH (H ∈ BC). Gọi O là hình chiếu vuông góc của A lên (SBC). Khẳng định nào sau đây sai ?
A.
B.
C.
D.
- Câu 20 : Cho hình chóp tam giác đều S.ABC cạnh đáy bằng 2a và chiều cao bằng . Tính khoảng cách từ tâm O của đáy ABC đến một mặt bên:
A.
B.
C.
D.
- Câu 21 : Cho hình hộp ABCD.EFGH . Gọi I là tâm hình bình hành ABEF và K là tâm hình bình hành BCGF. Trong các khẳng định sau, khẳng định nào đúng?
A. đồng phẳng
B. đồng phẳng
C. đồng phẳng
D. đồng phẳng
- Câu 22 : Cho hình chóp S.ABC có SA = SB = SC và . Hãy xác định góc giữa cặp vectơ và ?
A. 60°
B. 120°
C. 45°
D. 90°
- Câu 23 : Cho hình chóp S.ABCD có đáy ABCD là hình thoi, O là giao điểm của 2 đường chéo và SA = SC. Các khẳng định sau, khẳng định nào đúng?
A.
B.
C.
D.
- Câu 24 : Cho hình chóp S.ABCD có SA ⊥ (ABCD), SA = 2a, ABCD là hình vuông cạnh bằng a. Gọi O là tâm của ABCD, tính khoảng cách từ O đến SC.
A.
B.
C.
D.
- Câu 25 : Cho hình chóp S.ABC trong đó SA, AB, BC vuông góc với nhau từng đôi một. Biết . Khoảng cách từ A đến (SBC) bằng:
A.
B.
C.
D.
- Câu 26 : Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là điểm bất kì thuộc đoạn thẳng SD. Tìm giao tuyến của các mặt phẳng:
- Câu 27 : Cho tứ diện ABCD. Gọi M, N lần lượt là các điểm thuộc các cạnh AB, AC sao cho ; gọi I và J lần lượt là trung điểm của BD, CD. Chứng minh rằng: BC // (MNI)
- Câu 28 : Cho tứ diện ABCD. Gọi M, N lần lượt là các điểm thuộc các cạnh AB, AC sao cho ; gọi I và J lần lượt là trung điểm của BD, CD. Tứ giác MNJI là hình gì. Tìm điều kiện để tứ giác MNJI là hình bình hành.
- Câu 29 : Cho hình chóp S.ABCD. Gọi M, N là hai điểm trên SB, CD và (P) là mặt phẳng qua MN và song song với SC. Tìm giao tuyến của mặt phẳng (P) với các mặt phẳng (SCD); (SBC); (SAC).
- Câu 30 : Cho hình chóp S.ABCD. Gọi M, N là hai điểm trên SB, CD và (P) là mặt phẳng qua MN và song song với SC. Xác định thiết diện của hình chóp và mặt phẳng (P).
- Câu 31 : Cho hình chóp S. ABCD có đáy ABCD là hình thoi cạnh a và . Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy, góc giữa hai mặt phẳng (SAB) và (ABCD) bằng . Tính khoảng cách giữa hai đường thẳng SA, CD theo a ?
- Câu 32 : Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, AB = 2a, , mặt bên SAB là tam giác cân đỉnh A, hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy trùng với trung điểm H của AI. Khoảng cách giữa hai đường thẳng SB và CD bằng bao nhiêu?
- Câu 33 : Cho tứ diện ABCD có AB⊥(BCD) . Trong ΔBCD vẽ các đường cao BE và DF cắt nhau ở O. Trong (ADC) vẽ DK⊥AC tại K. Chứng minh: (ADC)⊥(DFK)
- Câu 34 : Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC), gọi I là trung điểm cạnh BC. Biết góc giữa đường thẳng SI và mặt phẳng (ABC) bằng . Tính khoảng cách giữa hai đường thẳng SB và AC?
- - Trắc nghiệm Hình học 11 Bài 5 Khoảng cách
- - Trắc nghiệm Toán 11 Bài 1 Hàm số lượng giác
- - Trắc nghiệm Toán 11 Bài 2 Phương trình lượng giác cơ bản
- - Trắc nghiệm Toán 11 Bài 3 Một số phương trình lượng giác thường gặp
- - Trắc nghiệm Toán 11 Chương 1 Hàm số lượng giác và Phương trình lượng giác
- - Trắc nghiệm Hình học 11 Bài 2 Phép tịnh tiến
- - Trắc nghiệm Hình học 11 Bài 3 Phép đối xứng trục
- - Trắc nghiệm Hình học 11 Bài 4 Phép đối xứng tâm
- - Trắc nghiệm Hình học 11 Bài 5 Phép quay
- - Trắc nghiệm Hình học 11 Bài 6 Khái niệm về phép dời hình và hai hình bằng nhau