Lũy thừa
Với a,b >0
- \(a^\alpha.a^\beta.a^\gamma = a^{\alpha +\beta+\gamma}\)
- \((a^\alpha)^\beta = a^{\alpha\beta}\)
- \(a^\alpha.b^\alpha = (a.b)^\alpha\)
- \(a^{-\alpha} = \dfrac{1}{a^\alpha}\)
- \(\sqrt[n]{a^k} = a^\frac{k}{n}\)
- \(\sqrt[m]{\sqrt[n]{a^k}} = \sqrt[m.n]{a^k}=a^\frac{k}{m.n}\)