Công thức nhân đôi lượng giác
\(sin2x = 2sinx.cosx\)
\(cos2x = cos^2x - sin^2x = 2cos^2x -1 = 1 - 2sin^2x\)
\(cos^2x = \dfrac{1 + cos2x} {2}\)
\(sin^2x = \dfrac{1 - cos2x} {2}\)
\(tan2x= \dfrac{2tanx} {1 - tan^2x}\)
\(sin2x = 2sinx.cosx\)
\(cos2x = cos^2x - sin^2x = 2cos^2x -1 = 1 - 2sin^2x\)
\(cos^2x = \dfrac{1 + cos2x} {2}\)
\(sin^2x = \dfrac{1 - cos2x} {2}\)
\(tan2x= \dfrac{2tanx} {1 - tan^2x}\)