Đề thi HK1 Toán 8 - Quận Ba Đình - Hà Nội - Năm 20...
- Câu 1 : Phân tích các đa thức sau thành nhân tử:a. \(2{x^3} - 50x\)b. \({x^2} - 6x + 9 - 4{y^2}\)c. \({x^2} - 7x + 10\)
A \(\begin{array}{l}a)\,\,2x\left( {x - 5} \right)\left( {x + 5} \right)\\b)\,\,\left( {x - 3 + 2y} \right)\left( {x - 3 - 2y} \right)\\c)\,\,\left( {x - 5} \right)\left( {x - 2} \right)\end{array}\)
B \(\begin{array}{l}a)\,\,x\left( {x - 5} \right)\left( {x + 5} \right)\\b)\,\,\left( {x + 3 + 2y} \right)\left( {x + 3 - 2y} \right)\\c)\,\,\left( {x - 5} \right)\left( {x - 2} \right)\end{array}\)
C \(\begin{array}{l}a)\,\,2x\left( {x - 5} \right)\left( {x + 5} \right)\\b)\,\,\left( {x + 3 + 2y} \right)\left( {x + 3 - 2y} \right)\\c)\,\,\left( {x - 5} \right)\left( {x + 2} \right)\end{array}\)
D \(\begin{array}{l}a)\,\,x\left( {x - 5} \right)\left( {x + 5} \right)\\b)\,\,\left( {x - 3 + 2y} \right)\left( {x - 3 - 2y} \right)\\c)\,\,\left( {x - 5} \right)\left( {x + 2} \right)\end{array}\)
- Câu 2 : a. Làm tính chia: \(\left( {12{x^6}{y^4} + 9{x^5}{y^3} - 15{x^2}{y^3}} \right):3{x^2}{y^3}\)b. Rút gọn biểu thức: \(\left( {{x^2} - 2} \right)\left( {1 - x} \right) + \left( {x + 3} \right)\left( {{x^2} - 3x + 9} \right)\)
A \(\begin{array}{l}a)\,\,4{x^3}y + 3{x^2} - 5\\b)\,\,{x^2} + 2x + 27\end{array}\)
B \(\begin{array}{l}a)\,\,4{x^4}y + 3{x^3} - 5\\b)\,\,{x^2} + 2x + 25\end{array}\)
C \(\begin{array}{l}a)\,\,4{x^3}y + 3{x^3} - 5\\b)\,\,{x^2} + 3x + 25\end{array}\)
D \(\begin{array}{l}a)\,\,4{x^4}y + 3{x^2} - 5\\b)\,\,{x^2} + 2x + 27\end{array}\)
- Câu 3 : Cho biểu thức: \(A = \frac{5}{{x + 3}} - \frac{2}{{3 - x}} - \frac{{3{x^2} - 2x - 9}}{{{x^2} - 9}}\) (với \(x \ne \pm 3\))a. Rút gọn biểu thức \(A\) .b. Tính giá trị của \(A\) khi \(\left| {x - 2} \right| = 1\)c. Tìm giá trị nguyên của \(x\) để \(A\) có giá trị nguyên.
A \(\begin{array}{l}a)\,\,A = \frac{{3x}}{{x + 3}}\\b)\,\,A = \frac{3}{4}\\c)\,\,x \in \left\{ { - 2;\, - 4;\,0;\, - 6;\,6;\, - 12} \right\}\end{array}\)
B \(\begin{array}{l}a)\,\,A = \frac{{ - 3x}}{{x + 3}}\\b)\,\,A = \frac{{ - 3}}{4}\\c)\,\,x \in \left\{ { - 2;\, - 4;\, - 6;\,6;\, - 12} \right\}\end{array}\)
C \(\begin{array}{l}a)\,\,A = \frac{{ - 3x}}{{x + 3}}\\b)\,\,A = \frac{{ - 3}}{4}\\c)\,\,x \in \left\{ { - 2;\, - 4;\,0;\, - 6;\,6;\, - 12} \right\}\end{array}\)
D \(\begin{array}{l}a)\,\,A = \frac{{ - 3x}}{{x + 3}}\\b)\,\,A = \frac{{ - 3}}{4}\\c)\,\,x \in \left\{ { - 2;\, - 4;\,0;\, - 6;\,6;\,12} \right\}\end{array}\)
- Câu 4 : Cho \(\Delta ABC\) vuông tại \(A\) , gọi \(M\) là trung điểm của \(AC\) . Gọi \(D\) là điểm đối xứng với \(B\) qua \(M\) .a. Chứng minh tứ giác \(ABC{\rm{D}}\) là hình bình hành.b. Gọi \(N\) là điểm đối xứng với \(B\) qua \(A\) . Chứng minh tứ giác \(AC{\rm{D}}N\) là hình chữ nhật.c. Kéo dài \(MN\) cắt \(BC\) tại \(I\) . Vẽ đường thẳng qua \(A\) song song với \(MN\) cắt \(BC\) ở \(K\) . Chứng minh: \(KC = 2BK\)d. Qua \(B\) kẻ đường thẳng song song với \(MN\) cắt \(AC\) kéo dài tại \(E\) . Tam giác \(ABC\) cần có thêm điều kiện gì để tứ giác \(EBMN\) là hình vuông.
- - Trắc nghiệm Toán 8 Bài 1 Liên hệ giữa thứ tự và phép cộng
- - Trắc nghiệm Bài 2 Liên hệ giữa thứ tự và phép nhân - Luyện tập - Toán 8
- - Trắc nghiệm Toán 8 Bài 1 Nhân đơn thức với đa thức
- - Trắc nghiệm Hình học 8 Bài 1 Tứ giác
- - Trắc nghiệm Toán 8 Bài 2 Nhân đa thức với đa thức
- - Trắc nghiệm Toán 8 Bài 3 Những hằng đẳng thức đáng nhớ
- - Trắc nghiệm Toán 8 Bài 4 Những hằng đẳng thức đáng nhớ (tiếp)
- - Trắc nghiệm Toán 8 Bài 5 Những hằng đẳng thức đáng nhớ (tiếp)
- - Trắc nghiệm Toán 8 Bài 6 Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
- - Trắc nghiệm Toán 8 Bài 7 Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức