Bài tập Hình thang (có lời giải chi tiết) !!
- Câu 1 : Hình thang ABCD có . Khi đó
A.
B.
C.
D.
- Câu 2 : Cho hình thang ABCD trong đó có thì số đo của góc C = ?
A.
B.
C.
D.
- Câu 3 : Cho hình thang ABCD có AB // CD. Biết , tính
A.
B.
C.
D.
- Câu 4 : Cho hình thang ABCD có AB // CD và . Tính
A.
B.
C.
D.
- Câu 5 : Cho tứ giác lồi ABCD có AB // CD và AD = 6cm; DC = 8cm và AC = 10cm. Tìm khẳng định sai ?
A. Tam giác ADC vuông tại D.
B. Tứ giác ABCD là hình thang
C. Tứ giác ABCD là hình thang vuông có
D. Tứ giác ABCD là hình thang vuông có
- Câu 6 : Cho hình thang ABCD có AB // CD và . Tính góc A?
A.
B.
C.
D.
- Câu 7 : Cho hình thang ABCD có AB // CD và . Tính góc C?
A.
B.
C.
D.
- Câu 8 : Cho tam giác ABC cân tại A. Gọi D, E theo thứ tự thuộc các cạnh bên AB, AC sao cho DE // BC. Chọn đáp án đúng nhất. Tứ giác BDEC là hình gì?
A. Hình thang
B. Hình thang vuông
C. Hình thang cân
D. Cả A, B, C đều sai
- Câu 9 : Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau tại I. Qua I kẻ đường thẳng song song với BC, cắt các cạnh AB, AC lần lượt tại D và E. Chọn khẳng định đúng nhất?
A. Tứ giác BDIC là hình thang
B. Tứ giác BIEC là hình thang
C. Tứ giác BDEC là hình thang
D. Cả A, B, C đều đúng
- Câu 10 : Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau tại I. Qua I kẻ đường thẳng song song với BC, cắt các cạnh AB, AC lần lượt tại D và E.
A. DE > BD + CE
B. DE = BD + CE
C. DE < BD + CE
D. BC = BD + CE
Xem thêm
- - Trắc nghiệm Toán 8 Bài 1 Liên hệ giữa thứ tự và phép cộng
- - Trắc nghiệm Bài 2 Liên hệ giữa thứ tự và phép nhân - Luyện tập - Toán 8
- - Trắc nghiệm Toán 8 Bài 1 Nhân đơn thức với đa thức
- - Trắc nghiệm Hình học 8 Bài 1 Tứ giác
- - Trắc nghiệm Toán 8 Bài 2 Nhân đa thức với đa thức
- - Trắc nghiệm Toán 8 Bài 3 Những hằng đẳng thức đáng nhớ
- - Trắc nghiệm Toán 8 Bài 4 Những hằng đẳng thức đáng nhớ (tiếp)
- - Trắc nghiệm Toán 8 Bài 5 Những hằng đẳng thức đáng nhớ (tiếp)
- - Trắc nghiệm Toán 8 Bài 6 Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
- - Trắc nghiệm Toán 8 Bài 7 Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức