Cho dãy số \((a_n)\) xác định bởi \({a_1} = 5,{a_{...

Câu hỏi: Cho dãy số \((a_n)\) xác định bởi \({a_1} = 5,{a_{n + 1}} = q.{a_n} + 3\) với mọi \(n \ge 1,\) trong đó q là hằng số, \(a \ne 0,q \ne 1.\) Biết công thức số hạng tổng quát của dãy số viết được dưới dạng \({a_n} = \alpha .{q^{n - 1}} + \beta \frac{{1 - {q^{n - 1}}}}{{1 - q}}.\)Tính \(\alpha  + 2\beta ?\)

A. 13

B. 9

C. 11

D. 16