Cho hình nón (N) có đỉnh O và tâm của đáy là H. \(...

Câu hỏi: Cho hình nón (N) có đỉnh O và tâm của đáy là H. \(\left( \alpha  \right)\) là mặt phẳng qua O. Nên kí hiệu \(d\left( {H;\left( \alpha  \right)} \right)\) là khoảng cách từ H đến mặt phẳng \(\left( \alpha  \right)\). Biết chiều cao và bán kính đáy của hình nón lần lượt là h, r. Khẳng định nào sau đây là sai?

A. Nếu \(d\left( {H,\left( \alpha  \right)} \right) > \frac{{rh}}{{\sqrt {{r^2} + {h^2}} }}\) thì \(\left( \alpha  \right) \cap \left( N \right) = \emptyset \)

B. Nếu \(d\left( {H,\left( \alpha  \right)} \right) < \frac{{rh}}{{\sqrt {{r^2} + {h^2}} }}\) thì \(\left( \alpha  \right) \cap \left( N \right)\) là tam giác cân

C. Nếu \(d\left( {H,\left( \alpha  \right)} \right) = \frac{{rh}}{{\sqrt {{r^2} + {h^2}} }}\) thì \(\left( \alpha  \right) \cap \left( N \right)\) là đoạn thẳng

D. Nếu \(d\left( {H,\left( \alpha  \right)} \right) > \frac{{rh}}{{\sqrt {{r^2} + {h^2}} }}\) thì \(\left( \alpha  \right) \cap \left( N \right)\) là một điểm