Cho hàm số y = f(x) liên tục trên R và có đạo hàm...
Câu hỏi: Cho hàm số y = f(x) liên tục trên R và có đạo hàm \(f'\left( x \right) = \left( {x + 2} \right){\left( {x - 1} \right)^{2018}}{\left( {x - 2} \right)^{2019}}\). Khẳng định nào sau đây là đúng
A. Hàm số có ba điểm cực trị.
B. Hàm số nghịch biến trên khoảng (-2; 2)
C. Hàm số đạt cực đại tại điểm x = 1 và đạt cực tiểu tại các điểm \(x = \pm 2\)
D. Hàm số đồng biến trên mỗi khoảng (1; 2) và \(\left( {2; + \infty } \right)\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi thử THPT QG năm 2019 môn Toán Trường THPT Chuyên Lê Thánh Tông - Quảng Nam