Cho tứ diện ABCD, trên các cạnh BC, B...
Câu hỏi: Cho tứ diện ABCD, trên các cạnh BC, BD, AC lần lượt lấy các điểm M, N, P sao cho \(BC = 3BM,BD = \frac{3}{2}BN,AC = 2AP\). Mặt phẳng (MNP) chia khối tứ diện ABCD thành 2 phần có thể tích là \({V_1},{V_2}\). Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\)?
A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{26}}{{19}}\)
B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{3}}{{19}}\)
C. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{15}}{{19}}\)
D. \(\frac{{{V_1}}}{{{V_2}}} = \frac{{26}}{{13}}\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi thử THPT QG môn Toán năm 2019 Trường THPT Hàm Rồng - Thanh Hóa