Cho hàm số \(f(x)\) dương và liên tục trên đoạn [0...
Câu hỏi: Cho hàm số \(f(x)\) dương và liên tục trên đoạn [0;1] thỏa mãn \({e^x}.{\left[ {f\left( x \right)} \right]^2} - f'\left( x \right) = 0,\forall x \in \left[ {0;1} \right]\) và \(f\left( 0 \right) = \frac{1}{e}\). Khi đó \(f(1)\) bằng:
A. \(e^2\)
B. 1
C. e + 1
D. e
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi thử THPT QG năm 2019 môn Toán Trung tâm luyện thi ĐH KHTN