Cho nửa đường tròn đường kính AB, dây MN có độ dài...
Câu hỏi: Cho nửa đường tròn đường kính AB, dây MN có độ dài bằng bán kính R của đường tròn, M thuộc cung AN. Các tia AM và BN cắt nhau ở I, dây AN và BM cắt nhau ở K. Với vị trí nào của dây MN thì diện tích tam giác IAB lớn nhất? Tính diện tích đó theo bán kính R.
A. \(MN=BC;\:\:{S_{IAB}} = 2{R^2}\sqrt 3 .\)
B. \(MN=BC;\:\:{S_{IAB}} = {R^2}\sqrt 3 .\)
C. \(MN//BC;\:\:{S_{IAB}} =2 {R^2}\sqrt 3 .\)
D. \(MN//BC;\:\:{S_{IAB}} = {R^2}\sqrt 3 .\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề ôn tập chương 3 Hình học Toán 9 có đáp án Trường THCS Thường Thắng