Trong không gian tọa độ Oxyz, cho mặt phẳng \(\lef...

Câu hỏi: Trong không gian tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x-2y-2z+10=0\) và 2 đường thẳng \({{\textΔ}_{1}}:\frac{x-2}{1}=\frac{y}{1}=\frac{z-1}{1}\) và \({{\textΔ}_{2}}:\frac{x-2}{1}=\frac{y}{1}=\frac{z+3}{4}\). Viết phương trình mặt cầu (S) có tâm thuộc \({{\textΔ}_{1}}\) đồng thời tiếp xúc với \({{\textΔ}_{2}}\) và (P).

A. \(\left( S \right):{{\left( x+\frac{13}{3} \right)}^{2}}+{{\left( y-\frac{7}{3} \right)}^{2}}+{{\left( z-\frac{10}{3} \right)}^{2}}=1\)

B. \(\left( S \right):{{\left( x-\frac{13}{3} \right)}^{2}}+{{\left( y-\frac{7}{3} \right)}^{2}}+{{\left( z-\frac{10}{3} \right)}^{2}}=1\)

C. \(\left( S \right):{{\left( x-\frac{13}{3} \right)}^{2}}+{{\left( y+\frac{7}{3} \right)}^{2}}+{{\left( z-\frac{10}{3} \right)}^{2}}=1\)

D. \(\left( S \right):{{\left( x-\frac{13}{3} \right)}^{2}}+{{\left( y-\frac{7}{3} \right)}^{2}}+{{\left( z+\frac{10}{3} \right)}^{2}}=1\)