Tính thể tích V của phần vật thể giới hạn bởi hai...
Câu hỏi: Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 0 và x = 3, biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (\(0 \le x \le 3\)) là một hình chữ nhật có hai kích thước là \(x\) và \(2\sqrt {9 - {x^2}} \).
A. \(V = \int\limits_0^3 {\left( {x + 2\sqrt {9 - {x^2}} } \right)dx} \)
B. \(V = 4\pi \int\limits_0^3 {\left( {9 - {x^2}} \right)dx} \)
C. \(V = \int\limits_0^3 {2x\sqrt {9 - {x^2}} dx} \)
D. \(V = 2\int\limits_0^3 {\left( {x + 2\sqrt {9 - {x^2}} } \right)dx} \)
Câu hỏi trên thuộc đề trắc nghiệm
Đề kiểm tra 1 tiết Chương 3 Giải tích 12 Trường THPT Quỳnh Lưu 1 - Nghệ An năm 2018 - 2019