Cho tích phân \(I = \int\li...
Câu hỏi: Cho tích phân \(I = \int\limits_a^b {f(x).g'(x)\,dx} \) , nếu đặt \(\left\{ \begin{array}{l}u = f(x)\\dv = g'(x)\,dx\end{array} \right.\) thì:
A. \(I = f(x).g'(x)\left| \begin{array}{l}b\\a\end{array} \right. - \int\limits_a^b {f'(x).g(x)\,dx}\)
B. \(I = f(x).g(x)\left| \begin{array}{l}b\\a\end{array} \right. - \int\limits_a^b {f(x).g(x)\,dx} \)
C. \(I = f(x).g(x)\left| \begin{array}{l}b\\a\end{array} \right. - \int\limits_a^b {f'(x).g(x)\,dx}\)
D. \(I = f(x).g'(x)\left| \begin{array}{l}b\\a\end{array} \right. - \int\limits_a^b {f(x).g'(x)\,dx}\)
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi giữa HK2 môn Toán 12 năm 2021 - Trường THPT Phan Ngọc Hiển