Nếu phương trình \(a{x^2} + \left( {b + c} \right)...

Câu hỏi: Nếu phương trình \(a{x^2} + \left( {b + c} \right)x + d + e = 0\), \(\left( {a,b,c,d \in R} \right)\) có nghiệm \({x_0} \ge 1\) thì phương trình \(f\left( x \right) = 0\) với \(f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e\) cũng có nghiệm. Khi đó, mệnh đề nào sau đây đúng.

A. \(f\left( {\sqrt {{x_0}} } \right).f\left( { - \sqrt {{x_0}} } \right) > 0\)

B. \(f\left( {\sqrt {{x_0}} } \right).f\left( { - \sqrt {{x_0}} } \right) = \left( {{x_0} - 1} \right){\left( {b{x_0} + d} \right)^2}\)

C. \(f\left( {\sqrt {{x_0}} } \right).f\left( { - \sqrt {{x_0}} } \right) =  - {\left( {{x_0} - 1} \right)^2}\)

D. \(f\left( {\sqrt {{x_0}} } \right).f\left( { - \sqrt {{x_0}} } \right) \le 0\)