Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác...

Câu hỏi: Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(B\), \(AC=2a\), tam giác \(SAB\) và tam giác \(SCB\) lần lượt vuông tại \(A\), \(C\). Khoảng cách từ \(S\) đến mặt phẳng \(\left( ABC \right)\) bằng \(2a\). Côsin của góc giữa hai mặt phẳng \(\left( SAB \right)\) và \(\left( SCB \right)\) bằng

A

\(\frac{1}{3}\)                   

B \(\frac{1}{\sqrt{3}}\)         

C \(\frac{1}{\sqrt{2}}\)          

D  \(\frac{1}{2}\)