Giải hệ phương trình: \(\left\{ \begin{array}{l}{x...

Câu hỏi: Giải hệ phương trình: \(\left\{ \begin{array}{l}{x^2} + {y^2} + x + y = 18\\xy\left( {x + 1} \right)\left( {y + 1} \right) = 72\end{array} \right.\).

A \(\left( {x;y} \right) = \left\{ {\left( { - 3; - 4} \right),\;\left( { - 4; - 3} \right);\;\left( {4;\;2} \right),\;\left( {2;\,4} \right),\;\left( {3;\;2} \right),\;\left( {2;\;3} \right),\;\left( {3;3} \right),\;\left( { - 3;\; - 3} \right)} \right\}.\)

B \(\left( {x;y} \right) = \left\{ {\left( {3;\,4} \right),\;\left( {4;\,3} \right);\;\left( { - 4;\;2} \right),\;\left( {2; - 4} \right),\;\left( { - 3;\; - 2} \right),\;\left( { - 2;\; - 3} \right),\;\left( {3; - 3} \right),\;\left( { - 3;\;3} \right)} \right\}.\)

C \(\left( {x;y} \right) = \left\{ {\left( {3;\,4} \right),\;\left( {4;\,3} \right);\;\left( { - 4;\;2} \right),\;\left( {2; - 4} \right),\;\left( {3;\;2} \right),\;\left( {2;\;3} \right),\;\left( { - 3; - 3} \right),\;\left( {3;\;3} \right)} \right\}.\)

D \(\left( {x;y} \right) = \left\{ {\left( { - 3; - 4} \right),\;\left( { - 4; - 3} \right);\;\left( { - 4;\;2} \right),\;\left( {2; - 4} \right),\;\left( {3;\;2} \right),\;\left( {2;\;3} \right),\;\left( {3; - 3} \right),\;\left( { - 3;\;3} \right)} \right\}.\)