Cho \(A = \left( {\dfrac{{2x + 1}}{{\sqrt {{x^3}} ...

Câu hỏi: Cho \(A = \left( {\dfrac{{2x + 1}}{{\sqrt {{x^3}}  - 1}} - \dfrac{1}{{\sqrt x  - 1}}} \right):\left( {1 - \dfrac{{x + 4}}{{x + \sqrt x  + 1}}} \right)\)  với \(x \ge 0;\,\,x \ne 1\).a) Rút gọn A.                          b) Tìm \(x \in Z\) để \(A \in Z\)

A \(\begin{array}{l}
a)\,\,A = \frac{{\sqrt x }}{{\sqrt x - 3}}\\
b)\,\,x \in \left\{ {0;4;16} \right\}
\end{array}\)

B \(\begin{array}{l}
a)\,\,A = \frac{{\sqrt x }}{{\sqrt x - 3}}\\
b)\,\,x \in \left\{ {0;4;16;36} \right\}
\end{array}\)

C \(\begin{array}{l}
a)\,\,A = \frac{{\sqrt x - 3}}{{\sqrt x }}\\
b)\,\,x \in \left\{ {0;4;16;36} \right\}
\end{array}\)

D \(\begin{array}{l}
a)\,\,A = \frac{{\sqrt x - 3}}{{\sqrt x }}\\
b)\,\,x \in \left\{ {4;16;36} \right\}
\end{array}\)