Giải phương trình: \({\cos ^4}\frac{x}{2} -...
Câu hỏi: Giải phương trình: \({\cos ^4}\frac{x}{2} - {\sin ^4}\frac{x}{2} = \sin 2x\,\,\,\,\,\,\)
A \(\left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + m2\pi \\x = \frac{\pi }{2} + l\pi \end{array} \right.\,\,\,\,\,\,\,\left( {k,\;m,\;l \in \mathbb{Z}} \right)\)
B \(\left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + m2\pi \\x = \frac{\pi }{2} + l2\pi \end{array} \right.\,\,\,\,\,\,\,\left( {k,\;m,\;l \in \mathbb{Z}} \right)\)
C \(\left[ \begin{array}{l}x = \frac{\pi }{6} + k\pi \\x = \frac{{5\pi }}{6} + m\pi \\x = \frac{\pi }{2} + l2\pi \end{array} \right.\,\,\,\,\,\,\,\left( {k,\;m,\;l \in \mathbb{Z}} \right)\)
D \(\left[ \begin{array}{l}x = \frac{\pi }{6} + k\pi \\x = \frac{{5\pi }}{6} + m\pi \\x = \frac{\pi }{2} + l\pi \end{array} \right.\,\,\,\,\,\,\left( {k,\;m,\;l \in \mathbb{Z}} \right)\)
Câu hỏi trên thuộc đề trắc nghiệm
- Phương trình lượng giác đưa về dạng tích (có lời giải chi tiết)