Hai chất điểm cùng khối lượng, dao động điều hòa d...
Câu hỏi: Hai chất điểm cùng khối lượng, dao động điều hòa dọc theo hai đường thẳng song song kề nhau và song song với trục tọa độ Ox, có phương trình lần lượt là \({x_1} = {A_1}cos\left( {\omega t + {\varphi _1}} \right)\) và \({x_2} = {A_2}cos\left( {\omega t + {\varphi _2}} \right)\). Gọi \(d\) là khoảng cách lớn nhất giữa hai chất điểm theo phương Ox. Hình bên là đồ thị biểu diễn sự phụ thuộc của d theo \({A_1}\) (với \({A_2},{\varphi _1},{\varphi _2}\) là các giá trị xác định). Chọn gốc thế năng tại vị trí cân bằng. Nếu \({W_1}\) là tổng cơ năng của hai chất điểm ở giá trị \({a_1}\) và \({{\rm{W}}_2}\) là tổng cơ năng của hai chất điểm ở giá trị \({a_2}\) thì tỉ số \({{\rm{W}}_2}/{{\rm{W}}_1}\) gần nhất với kết quả nào sau đây?
A \(2,5.\)
B \(2,2.\)
C \(2,4.\)
D \(2,3.\)
Câu hỏi trên thuộc đề trắc nghiệm
50 bài tập Tổng hợp hai dao động điều hòa cùng phương, cùng tần số - Phương pháp giản đồ Frenen mức độ vận dụng cao