Tìm số nguyên dương \(n\) thỏa mãn\({{\log }_{a}}2...
Câu hỏi: Tìm số nguyên dương \(n\) thỏa mãn\({{\log }_{a}}2017+\frac{1}{{{2}^{2}}}{{\log }_{\sqrt{a}}}2017+\frac{1}{{{2}^{4}}}{{\log }_{\sqrt[4]{a}}}2017+\frac{1}{{{2}^{6}}}{{\log }_{\sqrt[8]{a}}}2017+\ldots +\frac{1}{{{2}^{2n}}}{{\log }_{\sqrt[{{2}^{n}}]{a}}}2017\)\(={{\log }_{a}}{{2017}^{2}}-\frac{{{\log }_{a}}2017}{{{2}^{2018}}}\), với \(0<a\ne 1\)
A \(n=2016\).
B \(n=2018\).
C \(n=2017\).
D \(n=2019\).
Câu hỏi trên thuộc đề trắc nghiệm
Đề thi thử THPT QG môn Toán THPT Kim Liên - Hà Nội - lần 1 - năm 2018 (có lời giải chi tiết)