Cho hai đa thức:\(\begin{align}  & A=-...

Câu hỏi: Cho hai đa thức:\(\begin{align}  & A=-x{{y}^{2}}+3xyz+{{x}^{3}}{{y}^{2}} \\  & B=-4x{{y}^{2}}-2xyz+3{{x}^{3}}{{y}^{2}}+5 \\ \end{align}\) a) Tìm đa thức M thỏa mãn: \(M+A=B\) .b) Tính giá trị của M với \(x=\frac{1}{2}\) và \(y=-1\) và \(z=0\)

A a) \(M= x{{y}^{2}}-5xyz+5{{x}^{3}}{{y}^{2}}+5.\)

b)  \(\frac{15}{4}\)

B a) \(M=-3x{{y}^{2}}-5xyz+2{{x}^{3}}{{y}^{2}}+15.\)

b)  \(\frac{1}{4}\)

C a) \(M=-3x{{y}^{2}}+8 xyz+2{{x}^{3}}{{y}^{2}}+5.\)

b)  \(\frac{5}{4}\)

D a) \(M=-3x{{y}^{2}}-5xyz+2{{x}^{3}}{{y}^{2}}+5.\)

b)  \(\frac{15}{4}\)