Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình v...

Câu hỏi: Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông, \(SA\) vuông góc với đáy, mặt bên \(\left( {SCD} \right)\) hợp với đáy một góc bằng \(60^\circ \), \(M\) là trung điểm của \(BC\). Biết thể tích khối chóp \(S.ABCD\) bằng \(\dfrac{{{a^3}\sqrt 3 }}{3}\). Khoảng cách từ \(M\) đến mặt phẳng \(\left( {SCD} \right)\) bằng:

A \(\dfrac{{a\sqrt 3 }}{6}\).

B \(a\sqrt 3 \).

C \(\dfrac{{a\sqrt 3 }}{4}\).

D \(\dfrac{{a\sqrt 3 }}{2}\).