Cho \(A = \left( {\dfrac{1}{{\sqrt x  + 1}} - \dfr...

Câu hỏi: Cho \(A = \left( {\dfrac{1}{{\sqrt x  + 1}} - \dfrac{{2\sqrt x  - 2}}{{x\sqrt x  - \sqrt x  + x - 1}}} \right):\left( {\dfrac{1}{{\sqrt x  - 1}} - \dfrac{2}{{x - 1}}} \right)\) với \(x \ge 0,x \ne 1.\)a) Rút gọn A.b) Tìm\(x \in Z\) để \(A \in Z\)c) Tìm x để A đạt GTNN.

A \(\begin{array}{l}
a)\,\,A = \dfrac{{ - 2}}{{\sqrt x + 1}}\\
b)\,\,x \in \left\{ {0;2} \right\}\\
c)\,\,\min A = - 1
\end{array}\)

B \(\begin{array}{l}
a)\,\,A = \dfrac{{\sqrt x - 1}}{{\sqrt x + 1}}\\
b)\,\,x = 0\\
c)\,\,\min A = - 1
\end{array}\)

C \(\begin{array}{l}
a)\,\,A = \dfrac{{\sqrt x - 1}}{{\sqrt x + 1}}\\
b)\,\,x \in \left\{ {0;\pm2} \right\}\\
c)\,\,\min A = 1
\end{array}\)

D \(\begin{array}{l}
a)\,\,A = \dfrac{{\sqrt x - 1}}{{\sqrt x + 1}}\\
b)\,\,x \in \left\{ {0;2} \right\}\\
c)\,\,\min A = - 1
\end{array}\)