Cho biểu thức: \(P = \left( {\frac{{3x + \sqrt {9x...
Câu hỏi: Cho biểu thức: \(P = \left( {\frac{{3x + \sqrt {9x} - 3}}{{x + \sqrt x - 2}} + \frac{1}{{\sqrt x - 1}} + \frac{1}{{\sqrt x + 2}} - 2} \right):\frac{1}{{x - 1}}.\)a) Tìm điều kiện xác định của \(P\) và rút gọn \(P.\)b) Tính giá trị của \(P\) khi \(x = 4 - 2\sqrt 3 .\)c) Tìm các số tự nhiên \(x\) để \(\frac{1}{P}\) là một số tự nhiên.
A a) \(x \geq 0; \, x\neq 1\) và \(P= {\sqrt x + 1} . \)
b) \(P=3.\)
c) \(x=0.\)
B a) \(x \geq 0\) và \(P= {\sqrt x + 1} . \)
b) \(P=3.\)
c) \(x=0.\)
C a) \(x \geq 0\) và \(P={\left( {\sqrt x + 1} \right)^2}. \)
b) \(P=3.\)
c) \(x=0.\)
D a) \(x \geq 0; \, x\neq 1\) và \(P={\left( {\sqrt x + 1} \right)^2}. \)
b) \(P=3.\)
c) \(x=0.\)
Câu hỏi trên thuộc đề trắc nghiệm
- Các dạng câu hỏi phụ của bài toán rút gọn biểu thức (Tiết 2) - có lời giải chi tiết